Solutions to Problem Set 4

EE419: Digital Communication Systems

Check the solutions for possible bugs!

1. A basis for the signal set is $\{\phi(t)=\sqrt{1 / T}, 0 \leq t \leq T\}$.
(a) The received signal should be correlated with $\phi(t)$ and sampled at symbol rate for optimal processing.
(b) The signal constellation is 1 -dimensional with bit 0 at the origin and bit 1 at $A \sqrt{T}$. The average signal energy is therefore $A^{2} T / 2$. Hence,

$$
\mathrm{SNR}=\frac{A^{2} T / 2}{N_{0} / 2}=\frac{A^{2} T}{N_{0}}
$$

assuming the 1-D noise variance is $\sigma^{2}=N_{0} / 2$. From the constellation, probability of symbol error is given by

$$
P_{e}=Q\left(\frac{A \sqrt{T}}{2 \sigma}\right)=Q\left(\sqrt{\frac{A^{2} T}{2 N_{0}}}\right)=Q(\sqrt{\mathrm{SNR} / 2})
$$

(c) In this case (BPSK), $\mathrm{SNR}=2 A^{2} T / N_{0}$ and

$$
P_{e}=Q\left(\frac{2 A \sqrt{T}}{2 \sigma}\right)=Q(\sqrt{\mathrm{SNR}})
$$

2. (a) A basis for the signal set is $\left\{\phi_{1}(t)=\sqrt{2 / T} \cos (2 \pi t / T), \phi_{2}(t)=\sqrt{2 / T} \cos (4 \pi t / T)(0 \leq t \leq\right.$ $T)\}$. The received signal should be correlated with $\phi_{1}(t)$ and $\phi_{2}(t)$ and sampled at symbol rate for optimal processing.
(b) The signal constellation is 2-D with bit 0 at $(\sqrt{T / 2}, 0)$ and bit 1 at $(0, \sqrt{T / 2})$. Hence,

$$
\mathrm{SNR}=\frac{T / 2}{N_{0}}=\frac{T}{2 N_{0}},
$$

assuming the 1-D noise variance is $\sigma^{2}=N_{0} / 2$. From the constellation, probability of symbol error is given by

$$
P_{e}=Q\left(\frac{\sqrt{T}}{2 \sigma}\right)=Q(\sqrt{\mathrm{SNR}})
$$

(c) In this case, the first basis signal can be taken to be $\phi_{1}(t)=\sqrt{2 / T} \cos (\pi t / T), 0 \leq t \leq T$. The second basis element is to be found by Gram-Schmidt orthonormalization process as $\phi_{2}(t)=\left[s_{2}(t)-<s_{2}(t), \phi_{1}(t)>\phi_{1}(t)\right]_{\text {unit-norm }}$, where $s_{2}(t)=\cos (3 \pi t / 2 T), 0 \leq t \leq T$. Since $<s_{2}(t), \phi_{1}(t)>=\frac{6 \sqrt{2 T}}{5 \pi}$ (check this), we have

$$
\bar{\phi}_{2}(t)=s_{2}(t)-<s_{2}(t), \phi_{1}(t)>\phi_{1}(t)=\cos (3 \pi t / 2 T)-\frac{12}{5 \pi} \cos (\pi t / T)
$$

Since

$$
\left\|\bar{\phi}_{2}(t)\right\|^{2}=\left\|s_{2}(t)\right\|^{2}-\left|<s_{2}(t), \phi_{1}(t)>\right|^{2}=\frac{T}{2}-\frac{72 T}{25 \pi^{2}}
$$

(check this) we have $\phi_{2}(t)=\bar{\phi}_{2}(t) /\left\|\bar{\phi}_{2}(t)\right\|$. The signal constellation is 2-D with bit 0 at $(\sqrt{T / 2}, 0)$ and bit 1 at

$$
\left(<s_{2}(t), \phi_{1}(t)>,\left\|\bar{\phi}_{2}(t)\right\|\right)=\left(\frac{6 \sqrt{2 T}}{5 \pi}, \sqrt{\frac{T}{2}-\frac{72 T}{25 \pi^{2}}}\right) \approx(0.54 \sqrt{T}, 0.46 \sqrt{T})
$$

The SNR is $\frac{T}{2 N_{0}}$ and probability of error is given by

$$
P_{e}=Q\left(\frac{\sqrt{\left(1-\frac{12}{5 \pi}\right) T}}{2 \sigma}\right) \approx Q(\sqrt{0.24 \mathrm{SNR}})
$$

3. There are four interior points each whose probability of correct decision is given by $P_{1}=(1-$ $2 Q(d / 2 \sigma))^{2}$. There are four corner points whose probability of correct decision is given by $P_{2}(1-$ $Q(d / 2 \sigma))^{2}$. There are eight other points whose probability of correct decision is given by $P_{3}=$ $(1-2 Q(d / 2 \sigma))(1-Q(d / 2 \sigma))$. Hence, probability of symbol error is given by

$$
\begin{aligned}
P_{e} & =(1 / 4)\left(1-P_{1}\right)+(1 / 4)\left(1-P_{2}\right)+(1 / 2)\left(1-P_{3}\right) \\
& =3 Q(d / 2 \sigma)-2.25 Q^{2}(d / 2 \sigma)
\end{aligned}
$$

Generalization to $2^{2 b}$-QAM is easily done by counting the number of interior, corner and other points.
4. Refer standard DSP texts for a proof.
5. (a) Remember to square $H(f)=1-|f| / W,|f|<W$ and obtain the aliased spectrum. The plots are easy to do.
(b) Is there any $1 / T$ for which the folded spectrum satisfies the Nyquist criterion? The folded spectrum will not satisfy Nyquist exactly. Can you prove this?
(c) The folded power spectral density is given by

$$
S\left(e^{j \omega}\right)=\frac{1}{T} \sum_{m=-\infty}^{\infty}\left|H\left(f+\frac{m}{T}\right)\right|^{2}
$$

with $\omega=2 \pi f T$. We evaluate $S\left(e^{j \omega}\right)$ for $\omega \in[-\pi, \pi]$ or in $f \in[-1 / 2 T, 1 / 2 T]$. Finally, we find $\rho_{h}[k]$ as the inverse DTFT of $S\left(e^{j \omega}\right)$.
i. For $T=1 / 2 W, S\left(e^{j \omega}\right)=2 W(1-|f| / W)^{2}$ for $|f|<W=1 / 2 T$ or

$$
S\left(e^{j \omega}\right)=2 W(1-|\omega| / \pi)^{2}, \quad|\omega|<\pi
$$

Doing inverse DTFT, we get

$$
\rho_{h}[k]=\frac{8 W}{\pi k^{2}}
$$

ii. For $T=1 / W, S\left(e^{j \omega}\right)=W\left((1-|f| / W)^{2}+(|f| / W)^{2}\right)$ for $|f|<W / 2=1 / 2 T$ or

$$
S\left(e^{j \omega}\right)=W\left((1-|\omega| / 2 \pi)^{2}+(|\omega| / 2 \pi)^{2}\right), \quad|\omega|<\pi
$$

Doing inverse DTFT, we get

$$
\rho_{h}[k]=\frac{2 W}{\pi k^{2}}
$$

iii. For $T=2 / W, S\left(e^{j \omega}\right)=W / 2\left((1-|f| / W)^{2}+(|f| / W)^{2}+(1 / 2+|f| / W)^{2}\right)$ for $|f|<$ $W / 4=1 / 2 T$ or

$$
S\left(e^{j \omega}\right)=W / 2\left((1-|\omega| / 4 \pi)^{2}+(|\omega| / 4 \pi)^{2}+(1 / 2+|\omega| / 4 \pi)^{2}\right), \quad|\omega|<\pi
$$

Doing inverse DTFT, we get

$$
\rho_{h}[k]=\frac{W(1+0.5 \cos (k \pi))}{4 \pi k^{2}}
$$

6. The following two cases seem to work.
(a) Transmit filter frequency response $\operatorname{rect}_{[-W / 2, W / 2]}(f)$ and symbol rate $W / 2$.
(b) Transmit filter frequency response $\operatorname{rect}_{[-W, W]}(f)$ and symbol rate W.
7. Transmit filter frequency response $\operatorname{rect}_{[-W / 2, W / 2]}(f)$ and symbol rate $W / 2$. Surprisingly, transmit filter frequency response $\operatorname{rect}_{[-W, W]}(f)$ and symbol rate $W / 2$ seems to work (check this).
8. (a) Since the phase response does not affect the folded spectrum, Nyquist criterion can be easily satisfied at the output of a matched filter for several symbol rates. However, the matched filter will have to implement the phase response $e^{-j \phi(f)}$.
(b) If $\phi(f)=2 \pi f \tau$, the matched filter is simply a delay.
(c) If $\phi(f)$ is non-linear, the implementation of the matched filter will have to meet the exact phase response requirement. Typically, one might do a Taylor series approximation in simple implementations.
9. Using $\cos \theta=\left(z+z^{-1}\right) / 2$ in $S_{h}\left(e^{j \theta}\right)$, get $S_{h}(z)$ without any simplification. Use $u=\left(z+z^{-1}\right) / 2$ to get $S_{h}(u)$, which will be a quadratic in u. Solve to find two roots u_{1} and u_{2} for $S_{h}(u)$. Then use $u_{i}=\left(z+z^{-1}\right) / 2$ for $i=1,2$ to get the four roots of $S_{h}(z)$. Group the roots inside the unit circle and find $M(z)$.
10. Since there is no aliasing and the transmit filter response is flat, the folded spectrum is

$$
S\left(e^{j 2 \pi f T}\right)=\sin ^{2}\left(\frac{\pi f}{2 W}\right), 0 \leq|f| \leq W
$$

Setting $\omega=2 \pi f T$ ans using $W T=1 / 2$, we get

$$
S\left(e^{j \omega}\right)=\sin ^{2}(w / 2)=0.5(1-\cos (w)),|\omega|<\pi
$$

Converting to z-transform, we get

$$
S(z)=0.5\left(1-\left(z+z^{-1}\right) / 2\right)=0.25\left(1-z^{-1}\right)(1-z)
$$

Hence, after a symbol-rate sampled WMF, the equivalent discrete-time channel is simply

$$
M(z)=1-z^{-1}
$$

