Problem Set 7

EE419: Digital Communication Systems

Consider the general ISI model shown below for all problems in this assignment. The equalizers work with the sequence $z[k]$. Assume $\mathcal{X}=\{-1,1\}$ wherever necessary.

1. Let $H(z)=c\left(c\right.$ is a complex number) and $S_{n}(z)=N_{0}$. Derive the MMSE linear equalizer $C(z)=\sum_{m=-P}^{P} c_{m} z^{-m}$ of order $N=2 P+1$ for $N=1,3,5$. Determine the MSE in each case. Use $c=e^{j \pi / 4}$ if numerical evaluation is necessary.
2. Let $H(z)=1+c z^{-1}$ (c is a complex number) and $S_{n}(z)=N_{0}$. Derive the MMSE linear equalizer $C(z)=\sum_{m=-P}^{P} c_{m} z^{-m}$ of order $N=2 P+1$ for $N=1,3,5$. Determine the MSE in each case. Use $c=1 / 2$ and $N_{0}=0.1$ if numerical evaluation is necessary.
3. Let $H(z)=\frac{1}{1+c z^{-1}}\left(c\right.$ is a complex number) and $S_{n}(z)=N_{0}$. Derive the MMSE linear equalizer $C(z)=\sum_{m=-P}^{P} c_{m} z^{-m}$ of order $N=2 P+1$ for $N=1,3,5$. Determine the MSE in each case. Use $c=1 / 2$ and $N_{0}=0.1$ if numerical evaluation is necessary.
4. Constrained ZF-LE: Determine the set of equations to be solved for finding an order$N(=2 P+1)$ zero-forcing linear equalizer $C(z)=\sum_{m=-P}^{P} c_{m} z^{-m}$. Assume a suitable $H(z)$ and $S_{n}(z)$, if necessary. Determine the MSE, if possible.
5. Constrained ZF-DFE: Determine the set of equations to be solved for finding a zero-forcing DFE i.e. a precursor $C(z)=\sum_{m=-P}^{0} c_{m} z^{-m}$ and a postcursor $D(z)=\sum_{m=1}^{P^{\prime}} d_{m} z^{-m}$. Assume a suitable $H(z)$ and $S_{n}(z)$, if necessary. Determine the MSE, if possible.
6. Constrained MMSE-DFE: Determine the set of equations to be solved for finding a MMSE DFE i.e. a precursor $C(z)=\sum_{m=-P}^{0} c_{m} z^{-m}$ and a postcursor $D(z)=\sum_{m=1}^{P^{\prime}} d_{m} z^{-m}$. Assume a suitable $H(z)$ and $S_{n}(z)$, if necessary. Determine the MSE, if possible.
7. Let $H(z)=\frac{1}{1+c z^{-1}}\left(c\right.$ is a complex number) and $S_{n}(z)=N_{0}$. Derive the MMSE DFE i.e. a precursor $C(z)=\sum_{m=-P}^{0} c_{m} z^{-m}$ and a postcursor $D(z)=\sum_{m=1}^{P^{\prime}} d_{m} z^{-m}$ for combinations of $P=0,1,2$ and $P^{\prime}=1,2,3$. Use $c=1 / 2$ and $N_{0}=0.1$ if numerical evaluation is necessary.
