Problem Set 7

EE419: Digital Communication Systems

Consider the general ISI model shown below for all problems in this assignment. The equalizers work with the sequence z[k]. Assume $\mathcal{X} = \{-1, 1\}$ wherever necessary.

- 1. Let H(z) = c (c is a complex number) and $S_n(z) = N_0$. Derive the MMSE linear equalizer $C(z) = \sum_{m=-P}^{P} c_m z^{-m}$ of order N = 2P + 1 for N = 1, 3, 5. Determine the MSE in each case. Use $c = e^{j\pi/4}$ if numerical evaluation is necessary.
- 2. Let $H(z) = 1 + cz^{-1}$ (*c* is a complex number) and $S_n(z) = N_0$. Derive the MMSE linear equalizer $C(z) = \sum_{m=-P}^{P} c_m z^{-m}$ of order N = 2P + 1 for N = 1, 3, 5. Determine the MSE in each case. Use c = 1/2 and $N_0 = 0.1$ if numerical evaluation is necessary.
- 3. Let $H(z) = \frac{1}{1+cz^{-1}}$ (c is a complex number) and $S_n(z) = N_0$. Derive the MMSE linear equalizer $C(z) = \sum_{m=-P}^{P} c_m z^{-m}$ of order N = 2P + 1 for N = 1, 3, 5. Determine the MSE in each case. Use c = 1/2 and $N_0 = 0.1$ if numerical evaluation is necessary.
- 4. Constrained ZF-LE: Determine the set of equations to be solved for finding an order-N(=2P+1) zero-forcing linear equalizer $C(z) = \sum_{m=-P}^{P} c_m z^{-m}$. Assume a suitable H(z) and $S_n(z)$, if necessary. Determine the MSE, if possible.
- 5. Constrained ZF-DFE: Determine the set of equations to be solved for finding a zero-forcing DFE i.e. a precursor $C(z) = \sum_{m=-P}^{0} c_m z^{-m}$ and a postcursor $D(z) = \sum_{m=1}^{P'} d_m z^{-m}$. Assume a suitable H(z) and $S_n(z)$, if necessary. Determine the MSE, if possible.
- 6. Constrained MMSE-DFE: Determine the set of equations to be solved for finding a MMSE DFE i.e. a precursor $C(z) = \sum_{m=-P}^{0} c_m z^{-m}$ and a postcursor $D(z) = \sum_{m=1}^{P'} d_m z^{-m}$. Assume a suitable H(z) and $S_n(z)$, if necessary. Determine the MSE, if possible.
- 7. Let $H(z) = \frac{1}{1+cz^{-1}}$ (*c* is a complex number) and $S_n(z) = N_0$. Derive the MMSE DFE i.e. a precursor $C(z) = \sum_{m=-P}^{0} c_m z^{-m}$ and a postcursor $D(z) = \sum_{m=1}^{P'} d_m z^{-m}$ for combinations of P = 0, 1, 2 and P' = 1, 2, 3. Use c = 1/2 and $N_0 = 0.1$ if numerical evaluation is necessary.