Problem Set 6

EE419: Digital Communication Systems

Consider the general ISI model shown below for all problems in this assignment.

1. Derive and compare the MSEs of ZF-LE, ZF-DFE, MMSE-LE and MMSE-DFE for the following cases with $\mathcal{X}=\{1,-1\}$. Compare with MLSD and matched-filter bound wherever possible. Constants c, d are complex. Constant N_{0} is real and positive. Consider $|c|>1$ and $|c|<1$ separately, and assume $|d|<1$. Assume suitable spectral factorizations, wherever necessary. Omit cases where there are more than 2 zeros or poles.
(a) $H(z)=1-c z^{-1}, S_{n}(z)=N_{0}$.
(b) $H(z)=1-c z^{-1}, S_{n}(z)=N_{0}\left(1-c z^{-1}\right)\left(1-c^{*} z\right)$.
(c) $H(z)=1-c z^{-1}, S_{n}(z)=N_{0}\left(1-d z^{-1}\right)\left(1-d^{*} z\right)$.
(d) $H(z)=1-c z^{-1}, S_{n}(z)=N_{0} \frac{1}{1-c z^{-1}} \frac{1}{1-c^{*} z}$.
(e) $H(z)=1-c z^{-1}, S_{n}(z)=N_{0} \frac{1}{1-d z^{-1}} \frac{1}{1-d^{*} z}$.
(f) $H(z)=\frac{1}{1-c z^{-1}}, S_{n}(z)=N_{0}$.
(g) $H(z)=\frac{1}{1-c z^{-1}}, S_{n}(z)=N_{0} \frac{1}{1-c z^{-1}} \frac{1}{1-c^{*} z}$.
(h) $H(z)=\frac{1}{1-c z^{-1}}, S_{n}(z)=N_{0} \frac{1}{1-d z^{-1}} \frac{1}{1-d^{*} z}$.
(i) $H(z)=\frac{1}{1-c z^{-1}}, S_{n}(z)=N_{0}\left(1-c z^{-1}\right)\left(1-c^{*} z\right)$.
(j) $H(z)=\frac{1}{1-c z^{-1}}, S_{n}(z)=N_{0}\left(1-d z^{-1}\right)\left(1-d^{*} z\right)$.
2. Derive and compare the MSEs of ZF-LE, ZF-DFE, MMSE-LE and MMSE-DFE for the following cases with $\mathcal{X}=\{1,-1\}$ and $S_{n}(z)=N_{0}>0$. Constants c, d are complex. Consider $|c|>1$ and $|c|<1$ separately, and assume $|d|<1$. Assume suitable spectral factorizations, wherever necessary. Omit cases where there are more than 2 zeros or poles.
(a) $H(z)=\frac{1-c z^{-1}}{1-d z^{-1}}$.
(b) $H(z)=\left(1-c z^{-1}\right)\left(1-d z^{-1}\right)$.
(c) $H(z)=\frac{1}{\left(1-c z^{-1}\right)\left(1-d z^{-1}\right)}$. Assume $|c|<1$.
3. Based on the above two problems, make a table of observations (practicality, error etc.) on the various equalizers depending on the locations of poles/zeros and spectrum of noise.
4. Compute the figure of merit of MLSD and matched-filter bound for the following cases. Assume $S_{n}(z)=N_{0}>0$.
(a) $\mathcal{X}=\{-1,1\}, H(z)=1+0.5 z^{-1}$.
(b) $\mathcal{X}=\{-1,1\}, H(z)=\left(1+0.5 z^{-1}\right)\left(1+0.25 z^{-1}\right)$.
(c) $\mathcal{X}=\{-1,1,-j, j\}, H(z)=1+0.5 z^{-1}$.
(d) $\mathcal{X}=\{-1,1\}, H(z)=1-\sqrt{2} z^{-1}+z^{-2}$.
