Graduate Admissions
Thematic Area Name  Short Keyword 
Communications, Networks and Signal Processing  EE1 
Power Systems, Power Electronics and High Voltage Engineering  EE2 
Micro & Nanoelectronics, MEMS, NEMS, Semiconductor Devices  EE3 
Control Systems, Instrumentation Engineering, Biomedical & Healthcare Technology  EE4 
Photonics – Lasers, Fiber Optics, NonLinear Optics, Micro & Nanophotonics, RF/Plasma Devices, Biophotonics  EE5 
Analog and Digital VLSI, Circuits  EE6 
You should indicate your preferences while applying for the program. If you are unsure about your interests, you could choose multiple research themes without any fear. While the above themes are just indicative of our research work, we usually cross several themes ourselves. So, it may not be uncommon to work on the interface of two research themes.
You first need to write a 1 or 2 hours test that will probe your fundamentals in different themes as per your application. If you are successful in the written test, you will be called to interview with us on the same day. We make our final offers of admission based on both the written test and interview.
Research Theme  Syllabus 
EE1 – Communications, Networks and Signal Processing 
Solving all example problems and exercises from the above books is strongly recommended as preparation for the entrance exam. Sample questions from the written exams in the previous years can be found here Suggested video lectures: (1) Signals and Systems (first 29 lectures), (2)Linear Algebra 
EE2 – Power Systems, Power Electronics and High Voltage Engineering 
Power Electronics: Operation of buck, boost and buck boost converters, power semiconductor devices and characteristics, operation of inverters – 180 degree mode and SPWM operation – single phase and three phase, bridge converters – single and three phase.
Electrical Machines: Theory and operation of single and three phase transformers, dc machines – separately excited, series and compound machines, induction machines – squirrel cage and wound rotor, cylindrical rotor synchronous machines. Methods of speed control of dc and induction machines.
Power Systems: Transmission lines, Series and shunt compensation, Per‐unit quantities, Bus admittance matrix, GaussSeidel and NewtonRaphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over‐current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion
Control Systems: Transfer function of a dynamic system, positive and negative feedback, transient and steady state response, RouthHurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, lead, lag and leadlag compensation, P, PI and PID controllers, State space model, State transition matrix, eigen values. High Voltage: Generation and Measurement of High voltages, Insulation Failure mechanisms Instrumentation: Instrument transformers, Protective CTs/PTs, measurement of power and energy, types of energy meters and their operation, telemetering, remote terminal units, Data Acquisition systems, trivector meters and event/disturbance recorders. Books: Cooper Helfrick, “Electrical Instrumentation and Measuring Techniques”, Prentice Hall India, 1986 The students will need to answer as many questions as possible. Some sample questions may be found here 
EE3 – Micro & Nanoelectronics, MEMS, NEMS, Semiconductor Devices 
Course Content : Solid state devices – Crystals and Electronic grade materials; Formation of energy bands in solids; Concept of hole, Density of states and Fermi level; Intrinsic and extrinsic semiconductors; Equilibrium Carrier concentration; Direct and indirect semiconductors; Recombination and Generation of carriers, Carrier transport; Drift and Diffusion; Equations of state; Continuity and Poisson equation; pn junction; energy band diagram, derivation of dc and ac characteristics; Bipolar junction transistors; physics and characteristics MOS capacitor; MOSFET physics, characteristics and modeling; Other devices: LEDs, Solar cells, metalsemiconductor junctions, solid state memories Books : Solving all example problems and exercises from the above reference books is *strongly* recommended as preparation for the entrance exam. Sample questions from the written exams in the previous years on Solid State Devices area can be found here. Please note that the written test will contain a part on basic engineering mathematics. 
EE4 – Control Systems, Instrumentation Engineering, Biomedical & Healthcare Technology 
The written examination will contain questions that aim to test the understanding of the fundamental principles that relate to the areas of activity of the EE4 group. The EE4 written test has two sets of question papers. One on Control Systems and the other on Measurement and Instrumentation. The students have the option of writing either control or Instrumentation stream papers depending on the area in which he/she would like to specialize. Shortlisted students will accordingly be called for the interviews. The syllabus for each group is as follows: Control System stream topics
References:
Measurements and Instrumentation stream topics
References:
The students will need to answer as many questions as possible. Sample questions can be viewed here Sample 1 and Sample 2 
EE5 – Photonics – Lasers, Fiber Optics, NonLinear Optics, Micro & Nanophotonics, RF/Plasma Devices, Biophotonics 
Suggested books – Engineering Electromagnetics by Hayt and Buck, Electronic Devices and Circuit Theory by Robert Boylestead, Solid State Electronic Devices by Streetman and Banerjee, and Louis Nashelsky, and Signals and Systems by Oppenheim and Willsky. We also advise you to view the NPTEL lectures on electromagnetics http://nptel.iitm.ac.in, networks and systems http://nptel.iitm.ac.in, solid state devices and analog circuits.
The students will need to answer as many questions as possible. Sample questions can be viewed here

EE6 – Analog and Digital VLSI, Circuits 
