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Abstract
Bessel beams (BBs) appear to be immune to diffraction over finite propagation distances due to the
conical nature of light propagation along the optical axis. This offers promising advantages in laser
fabrication. However, BBs exhibit a significant intensity variation along the direction of propagation.
We present a simple technique to engineer the axial intensity of the BBs over centimeter-long
propagation distances without expansion of the incoming laser beam. This method uses two
diffractive optical elements (DOEs), one converts the input Gaussian intensity profile to an
intermediate intensity distribution, which illuminates the second DOE, a binary axicon. BBs of a
desired axial intensity distribution over a few centimeters length can be generated.

Keywords: diffractive optics, beam shaping, bessel beams

(Some figures may appear in colour only in the online journal)

1. Introduction

Bessel beams (BBs) have an elongated axial light intensity
distribution that is immune to diffraction over finite propagation
distances. The analytical expression of the BBs intensity [1] was
refined in [2], where it was demonstrated that the zeroth order
BB is a member of a special class of solutions to the Helmholtz
equation that are propagation invariant.

The transverse intensity profile of the BBs follows a
zeroth order Bessel function, which has a high intensity
central peak surrounded by number of concentric rings.
Unlike a traditional Gaussian beam, whose beam waist
diverges, the transverse intensity profile of the BB remains
unchanged as it propagates. The ideal BB with rings
extending infinitely in the radial direction maintains constant
axial intensity (with an infinite amount of energy). Therefore,
only radially truncated approximations of BBs are practically
realizable. BBs also exhibit another interesting property
known as self-healing, i.e. the ability of the beam to recon-
struct after encountering an obstacle. Owing to these special

properties, these beams are being used as an alternative to
Gaussian beams in many applications such as optical
manipulation [3], high precision hole drilling [4] and light
sheet microscopy [5]. Several techniques have been proposed
to generate these beams: refractive axicons [6], diffractive
axicons [7] and annular apertures [8].

Even though the above mentioned techniques can be
used to generate Bessel-like beams, they all suffer from
non-uniformity of intensity along the axis. The axial intensity
variations along the axis limits the applicability of these beams.
Several techniques have already been reported to create BBs
with specific axial intensity profiles [9, 10]. An axicon with an
annular aperture and a logarithmic phase profile has been pro-
posed to flatten [11] the axial intensity of the Bessel-like beams.
Lens axicons [12] were proposed to generate uniform axial
intensity BBs over long propagation distances, but this method
uses an annular aperture, which results in blockage of light and
hence, has low efficiency. It was shown that by superposing a
finite number of BBs with different longitudinal wave numbers,
one can produce arbitrary desired axial intensities known as
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‘frozen waves’ (FW) [13]. Tracio et alused the FW approach
and experimentally realized a BB using a holographic technique
[14, 15]. Controlling axial intensity was also achieved in
absorbing fluids to counter the propagation losses [16, 17].
Recently cardioid-like apertures [18] were proposed to flatten the
axial intensity oscillations. The authors have shown the simu-
lation results of the axial intensity of an ideal zeroth order BB
propagating through a cardioid-like aperture. Large apertures of
radius 50mm were used to achieve long propagation distance of
30m. In this paper, we have experimentally shown long pro-
pagation distances for a relatively very small axicon radius
of 1mm.

For emerging industrial applications, such as laser dicing,
drilling and inscription of optical elements, the two important
requirements are the ability to control the beam intensity
along the axis and to move the focus [19]. In order to use BBs
for material modification [20, 21], it is preferable to have
simple optical elements, which can be directly inserted in the
path of a laser’s Gaussian-like beam to generate BBs. In this
paper, we demonstrate a technique that uses two diffractive
optical elements (DOEs). The first DOE converts the incident
Gaussian beam into an intermediate intensity distribution,
which illuminates the second DOE, a diffractive axicon to
produce the desired on-axis intensity. In this manner, the final
axial intensity can be engineered to have any desired variation
by suitably adjusting the intensity output of the first DOE.
This is demonstrated with examples of axial intensity dis-
tributions that are: (i) linearly increasing, (ii) uniform, and (iii)
exponentially increasing. DOEs were designed for each case,
and the axial intensity outputs were simulated. Simulation
results were compared with experimental results for the
first case. The DOEs were fabricated using electron beam
lithography (EBL) and the desired on-axis intensity profiles
were achieved over long propagation distances of a few
centimeters.

2. Theory: BB

Axicons—conical lenses—are optical elements that have
rotational symmetry about the z-axis (figure 1(a)). They
generate a quasi-BB throughout their depth of focus (DOF)
region. Beyond the DOF, the beam gradually transforms into
a ring of constant width with increasing radius as it propa-
gates. The important parameters that characterize an axicon
are its front face radius, R, the cone angle, α, and the
refractive index, n. These parameters together determine the
length of the DOF of the axicon. The scalar equation of a
zeroth order BB propagating in the z direction can be
described in cylindrical coordinates by:

E r z A ik z J k r, , exp , 1z r0f =( ) · ( ) · ( ) ( )

where A is the amplitude, kz and kr are the longitudinal and
transverse wave numbers that satisfy the equation

k k kz r
2 2 2= = +p
l

and λ is the wavelength.
The numerical aperture (NA) of an axicon is a function of

the cone angle α as:

nNA sin sin sin sin . 21q a a= = --( ) ( ( · ( )) ) ( )

The full width half maximum (FWHM) of the zeroth order
BB can be derived from equation (1) as:

k
FWHM

2.25 0.358

NA
. 3

r

l
= = ( )

Consider the input light beam to be a collection of rays
traveling parallel to the z-axis. All these rays refract at the
conical surface of the axicon towards the axis with the same
angle θ. All the rays at one radial distance, come to focus at
one point on the axis. The rays incident at the extreme of the
axicon (i.e. the furtherest radial distance) determine the DOF
of the axicon, as shown in figure 1(a). Using Snell’s law,

nsin sinq a= and applying the small angle approximation

Figure 1. (a) Refractive axicon ray tracing for the Gaussian input; DOF is the depth of focus. (b) Analytical (line) and Fresnel integral
simulated (dots) axial intensity of the Bessel beam generated by an axicon with radius R=2mm, α=1.6° for an incident Gaussian beam of
waist 0.5mm.
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for α, the DOF is found to be:

w

n
DOF

1
, 4

a
=

-( )
( )

where w is the radius of the illuminating beam. Even though
the axicon generates a BB, the intensity along the axis is not
uniform within the DOF. To demonstrate this, we consider a
standard Gaussian intensity profile for the incident beam, i.e.

I r I
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where w0 is the beam waist (radius), I0 is the peak intensity of
the Gaussian beam and r x y2 2= + is the radial distance
from the z-axis. To derive an analytical expression for the on-
axis intensity, we consider a thin annular ring of width dr,
inner radius r and outer radius r+dr on the front surface of
the axicon. The amount of power passing through this annular
ring is given by:
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From the geometrical law of energy conservation, this power
Pring(r) gets spread out along a length dz on the z-axis.
Therefore, the axial intensity is given by AI z P r dzring=( ) ( ) .
Dividing both sides of equation (6) with dz and substituting
r=z(n−1)α from equation (4) gives:

AI z I
z n
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From equation (7), it can be seen that the on-axis intensity of
a BB generated using an axicon is directly related to the input
intensity profile Iin(r). Equation (7) can be generalized and the
input intensity profile Iin(r) can be written in terms of AI as:

I r MAI z r n r1 , 8in a= = -( ) [ ( ) ] ( )

where M=1/2π (n−1)α is a constant for the designed
axicon. It should be noted that equation (8) should be used to
compute the on-axis intensity only for 0<z<DOF.

To confirm the validity of this equation, we have com-
pared the axial intensity derived from equation (8) with the
Fresnel simulations of a diffractive axicon for a Gaussian
input shown in figure 1(b). The axicon (DOE2) parameters
used were: R=1mm and α=1.6°, and the illuminating
Gaussian beam waist radius was 0.5mm, these parameters
result in a DOF of ≈3.5cm, which is useful for practical
applications. Simulated results are in good agreement with
analytical calculations.

3. Samples and fabrication

The DOEs were designed with a diameter of 2mm operating
at a wavelength of 633nm and their phase profiles were
quantized to 0 and π for fabrication feasibility with EBL.

Polymethylmethacrylate resist 950K A8 (MicroChem
GmbH) was used as the EBL resist. Indium tin oxide (ITO)
coated glass plate was used as a substrate. The ITO layer
prevents charging during EBL writing. Presence of the ITO
layer decreased the transmission to 85% for 633 nm. The EBL
parameters were as follows: acceleration voltage 10kV,
aperture 30 μm and dose 70 μC cm–2. The DOEs were
developed in a mixture of methyl isobutyl ketone and iso-
propyl alcohol (IPA) at ratio 1:3 for 50s followed by cleaning
in IPA for 30s.

4. Results and discussion

For an axicon, the on-axis intensity rises to a peak and gra-
dually declines towards the end of the DOF (figure 1(b)),
when the incident beam is Gaussian-like. Therefore, for
example, when uniform axial intensity is desired, one can
only utilize these beams over a very limited axial region,
where the intensity might be considered uniform. Alternately,
the beams could only be used in applications where uni-
formity is not important. The technique discussed in the fol-
lowing section allows one to engineer the axial intensity of
BBs using two DOEs. The output is simulated by calculating
the intensities at different planes along the beam propagation
direction using the Fresnel diffraction integrals [22]. The
DOEs were fabricated using EBL. With this method, desired
on-axis intensity profiles were achieved over long propaga-
tion distances of a few centimeters.

4.1. Engineering the axial intensity

As it was shown in equation (8), the on-axis intensity is
directly linked to the incident intensity profile. Therefore, this
relationship can be used to back-calculate the input intensity
Iin(r) that gives the desired AI(z). As most laser sources will
have a Gaussian intensity profile, we need to design an optical
element (DOE1) that coverts the Gaussian intensity into the
desired intermediate intensity Iin(r) at the input plane of the
diffractive axicon (DOE2). The phase profile of DOE1 is
calculated using either the simplified mesh technique [23] or
the Gechberg–Saxton (G–S) algorithm [24]. The following
axial intensities are presented in the next section: (i) linearly
increasing, (ii) uniform, and (iii) exponentially increasing.

4.1.1. Simulation: a linearly increasing axial intensity. For a
linearly increasing axial intensity, the axial intensity is:

AI z az, 9=( ) ( )

where a is a positive constant. We get the desired input
intensity for the diffractive axicon, by substituting this in
equation (8):

I r aM2 , 10in
2p=( ) ( )

i.e. a flat-top beam. Since the input and the desired output
intensities are known, they can be used to calculate the phase
distribution that would convert one to the other. While the
G–S algorithm is perfect for such problems, it generates a
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random phase variation, which leads to scattering in practical
systems. In order to avoid this, the calculated phase
distribution should be continuous.

In the simplified mesh technique, the incident and output
beams are each divided into a mesh consisting of zones of
equal power. Eikonal equations [25] are used to connect the
input to the output zones. The phase distribution f(x, y),
required to produce the desired output is obtained by solving
these equations [23, 26].

Since the energy in each zone in the input plane is
directed to a similarly located zone in the output plane and as
the equations are solved simultaneously, the phase obtained is
continuous. It should be pointed out that this technique is
useful in cases, where the meshes are easy to construct.

In our simulations, the input Gaussian beam waist
diameter was chosen as 1.1mm to match the laser beam
used in the experiment. For accurate simulation results, the
phase distribution of DOE1 is quantized to 0 and π as shown
in figure 2(a), which makes it a closer approximation to the
fabricated DOE1. DOE1 creates a circular flat-top beam.
Simulated Iin(r) at the input of DOE2 and the on-axis intensity
are shown in figures 2 and 3, respectively. The oscillations in
the on-axis intensity can be attributed to the oscillations in the
flat-top input, that arise due to the diffractive nature of the
DOE1 and the axicon. These oscillations can be suppressed

by using multi-level/continuous phase diffractive elements,
these also help to improve the efficiency of the generated BB.

4.1.2. Simulation: an uniform axial intensity. The uniform
axial intensity is desired for many practical applications. The
axial intensity in this case linearly increases to its maximum
and stays uniform thereafter:

AI z az z d
a d z

for 0 ;
for DOF; 11

1

1

= < <
= < <
( )

( )

where a is a positive constant. The on-axis intensity is
constant between the axial points d1 and the DOF. The
desired Iin(r) to create this axial intensity is:

I r aM
r

1
, 12in =( ) ( )

which is a hyperbolic intensity profile. A hyperbolic intensity
profile has very high intensity close to the center as r approaches
zero. To avoid this, we have added a finite constant intensity at
the center of Iin(r) as shown in figure 4(c). In this case, the phase
profile f(x, y) that transforms the input Gaussian beam into the
desired intensity profile was computed using the G–S algorithm.
This is because the mesh of the output beam was more
complicated for this intensity distribution. The corresponding
Fresnel simulations are shown in figure 4. Simulated on-axis
intensity is presented in figure 5(a).

4.1.3. Simulation: a parabolic axial intensity. Finally, a
parabolic axial intensity profile has been realized to prove
the versatility of this method:

AI z az , 132=( ) ( )

where a is a positive constant. The desired Iin(r) to get this
axial intensity is,

I r aM r4 , 14in
2 3p=( ) ( )

which is a radially increasing intensity distribution. The
simulated axial intensity shown in figure 5(b) was obtained
for Fresnel simulations of the DOE1 shown in figure 6.

Figure 2. Simulation results. (a) Phase profile of DOE1, (b) intensity profile created at the front surface of the axicon, 10 cm behind the
DOE1, (c) intensity profile along the central line AA′ of (b).

Figure 3. Fresnel simulation (same method as in figure 1) of linearly
increasing axial intensity and beam cross section in the yz-plane.
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4.2. Fabricated BB generator

The experimental setup used for characterization of the fab-
ricated optical elements is shown in figure 7(a). A collimated
beam from a He–Ne source with 1/e2 diameter of 1.1mm
was passed through DOE1. This element was designed to
create the desired Iin(r) at the distance of 10cm behind the

element, at the location of DOE2. Care has been taken to
align the center of both DOE1 and DOE2. The confocal
microscope images of the diffractive axicon and its profile are
shown in figures 7(b) and (c).

Figure 8(a) shows the transverse intensity profile of the
BB generated after DOE2, the FWHM is measured to be

Figure 4. Simulation results. (a) Phase profile of DOE1 with random phase, which is a standard feature of a pure phase distribution generated
by the G–S algorithm. This pattern is more complex to fabricate and it is more susceptible to scattering. (b) Intensity profile created at the
front surface of axicon, 10cm behind DOE1 (c) intensity profile along the central line AA′ of (b).

Figure 5. Fresnel simulation of the Bessel beam. (a) Uniform axial intensity, (b) parabolically increasing axial intensity with beam cross
section in yz-plane shown above.

Figure 6. Simulation. The phase of DOE1 (a) and intensity (b) profiles created at the front surface of the axicon 10cm behind the DOE1. The
phase span in (a) is 0−2π. (c) Intensity profile along the central line AA′ shown in (b).
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≈11 μm which is close to the theoretical value of 15.52 μm
for λ=633 nm (equation (3)). The NA of the axicon was
found to be 0.02, the low NA and large FWHM are the
consequences of the long DOF. The on-axis intensity was
measured by moving a CCD camera along the axis using a
translation stage. The experimental results of the Gaussian to
flat-top beam conversion with DOE1 are shown in figure 8(c).
Measured values of the on-axis intensity for the Gaussian and
flat-top incidence are summarized in figure 9(a).

The following procedure to analyse the BB property was
implemented. The CCD-recorded transverse beam intensity
profile was fitted with the cross section of the ideal 0th-order BB
to align the centres of all the images captured along the DOF.
The data were azimuthally averaged to its 1-dimensional central
cross section and stacked to form the side view of the beam
propagation as shown in figure 9(b). The beam cross section
remained almost constant throughout the DOF. The axial
intensity within the first 1.5cm could not be measured as the
CCD sensor housing had a depth of ≈1.5 cm within the
C-mount. In this paper, we simulated three cases (linearly
increasing, uniform along the axis and axially parabolic). The
first and third cases were calculated using the mesh technique
resulting in a continuous phase for DOE1. As both cases were
calculated using the same method, only the first element was
fabricated, using e-beam lithography. In order to do so, the
analog phase was first binarised. The second case was calculated

using the GS algorithm, resulting in a random phase which is
challenging to fabricate with EBL as it involves random and
analog phase variations over small areas. Fabrication of spatially
varying random phase patterns using metasurfaces can be
achieved [27]. Capasso et al have recently demonstrated meta-
surface axicons [28] operating at visible wavelengths.

We used two binary DOEs written on ITO coated bor-
osilicate glass substrate in tandem to achieve desired axial
intensity profile. The theoretical maximum transmittance of
each of these DOEs is 81% at the used wavelength of 632nm
which results in an over all efficiency of 65%. Further
reduction in efficiency due to diffraction losses is a drawback
of this technique as the DOEs are binary in nature. This
situation can be improved by fabricating multi-level 3D
DOEs using advanced fabrication techniques such as a
grayscale EBL, scanning tip method for 3D structuring of
resist, e.g. using NanoFrazor, or polymerization via direct
laser writing [29]. Flat meta-optical elements [30] can also be
used to fabricate these DOEs, which offer high resolution
spatially varying phase that can minimize diffraction losses.
Higher efficiencies could be achieved by depositing an anti-
reflection coating on the DOEs. Since the purpose of DOE1 is
only to generate an intermediate Iin(r) for a predetermined
axial intensity and is not essential for generation of the BB,
the DOF ranging from a few millimeters-to-centimeters can
be tuned just by changing DOE2.

Figure 7. (a) Experimental setup, (b) microscope images of fabricated diffractive axicon designed for R=1mm and DOF=3.5 cm. (c)
Depth profile measured with confocal microscope.

Figure 8. Experimental CCD images, (a) transverse intensity of Bessel beam after DOE 2 at z=3.2 cm, (b) line profile along the the center
of (a) fitted to zeroth order Bessel function (dashed line) with an FWHM of11 μm, (c) flat-top intensity profile. (d) Intensity plotted along the
central line of (c).
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Typically, it is difficult to manufacture refractive axicons
with cone angles less than ∼1°, which puts a limitation on the
length of a few millimeters on the DOF. With the proposed
technique, longer DOFs up to centimeters are possible as the
diffractive axicons can be designed and easily fabricated for
cone angles <1°. As this technique does not use any spatial
light modulators for beam shaping, the two compact DOEs
can be easily incorporated into any practical laser fabrication
or imaging application that does not require real-time tuning
of the axial intensity.

5. Conclusions and outlook

A simple method to engineer the axial intensity of the BBs,
using two simple DOEs, over longer lengths 3.5 cm is
demonstrated. This method is particularly advantageous over
methods that use spatial light modulators, as those devices are
expensive and difficult to include in industrial applications.
We have designed DOEs to generate BBs with a linearly
increasing axial intensity and with the uniform axial intensity.
Experimental results show a good agreement with
simulations.

One area of applications which can benefit from the
presented simple design using flat optical elements is emer-
ging in the field of free electron lasers where an optical
excitation by ultra-short laser pulses should be combined
coaxially with femtosecond x-ray beam which propagates on
the center axis. By introducing center micro-hole in the DOE2
and a mirror with a hole between DOE1 and 2, it is possible to
combine fs x-ray and optical beams to a small micro-focus
with such folded geometry. A small central hole will not
compromise an optical performance of the optical element.
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