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Abstract-We consider a dense, ad hoc wireless network con-
fined to a small region, such that direct communication is possible
between any pair of nodes. The physical communication model is
that a receiver decodes the signal from a single transmitter, while
treating all other signals as interference. Data packets are sent be-
tween source-destination pairs by multihop relaying. We assume
that nodes self-organise into a multihop network such that all hops
are of length d meters, where d is a design parameter. There is a
contention based multiaccess scheme, and it is assumed that every
node always has data to send, either originated from it or a transit
packet (saturation assumption). In this scenario, we seek to maxi-
mize a measure ofthe transport capacity of the network (measured
in bit-meters per second) over power controls (in a fading environ-
ment) and over the hop distance d, subject to an average power
constraint.
We first argue that for a dense collection of nodes confined to a

small region, single cell operation is efficient for single user decod-
ing transceivers. Then, operating the dense ad hoc network (de-
scribed above) as a single cell, we study the optimal hop length and
power control that maximizes the transport capacity for a given
network power constraint. More specifically, for a fading channel
and for a fixed transmission time strategy (akin to the IEEE 802.11
TXOP), we find that there exists an intrinsic aggregate bit rate
(Oopt bits per second, depending on the contention mechanism and
the channel fading characteristics) carried by the network, when
operating at the optimal hop length and power control. The op-
timal transport capacity is of the form dopt(Pt) x Oopt with dopt

_ 1 _

scaling as Pt 7, where Pt is the available time average transmit
power and q1 is the path loss exponent. Under certain conditions
on the fading distribution, we then provide a simple characterisa-
tion of the optimal operating point.

Index Terms-Multihop Relaying, Optimal Power Control, Self-
Organisation, Fixed Transmission Time

I. INTRODUCTION

We consider a scenario in which there is a large number of
stationary nodes (e.g., hundreds of nodes) confined to a small
area (e.g., spatial diameter 30m), and organised in to a multi-
hop ad hoc wireless network. Source-destination pairs are cho-
sen randomly and we assume that the traffic in the network is
homogeneous. We assume that data packets are sent between
source-destination pairs by multihop relaying with single user
decoding and forwarding of packets, i.e., we assume that sig-
nals received from nodes other than the intended transmitter
are treated as interference. A distributed multiaccess contention
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scheme is used in order to schedule transmissions; for example,
the CSMA/CA based distributed coordination function (DCF)
of the IEEE 802.11 standard for wireless local area networks
(WLANs). We assume that all nodes can decode all the con-
tention control transmissions (i.e., there are no hidden nodes),
and only one successful transmission takes place at any time in
the network. In this sense we say that we are dealing with a sin-
gle cell scenario. Thus our work in this paper can be viewed as
an extension of the performance analysis presented in [2] and
extended in [1]. We further assume that, during the exchange
of contention control packets, pairs of communicating nodes
are able to estimate the channel fading between themselves and
are thus able to perform power control per transmission.

There is a natural tradeoff between using high power and
long hop lengths (single hop direct transmission between
the source-destination pair), versus using low power and
shorter hop lengths (multihop communication using interme-
diate nodes), with the latter necessitating more packets to be
transported in the network. The objective ofthe present paper is
to study optimal routing, in terms ofthe hop length, and optimal
power control for a fading channel, when a single cell network
(such as that studied in [1]) is used in a multihop mode. Our
objective is to maximise a certain measure ofnetwork transport
capacity (measured in bit-meters per second; see Section IV),
subject to a network power constraint. A network power con-
straint determines, to a first order, the lifetime of the network.

Situations and considerations such as those that we study
could arise in a dense ad hoc sensor network. Ad hoc sen-
sor networks are now being studied as possible replacements
for wired measurement networks in large factories. For exam-
ple, a distillation column in a chemical plant could be equipped
with pressure and temperature sensors and valve actuators. The
sensors monitor the system and communicate the pressure and
temperature values to a central controller which in turn actu-
ates the valves to operate the column at the desired operating
point. Direct communication between the sensors and actuators
is also a possibility. Such installations could involve hundreds
of devices, organised into a single cell ad hoc wireless network
because ofthe physical proximity ofthe nodes. There would be
many flows within the network and there would be multihop-
ping. We wish to address the question of optimal organisation
of such an ad hoc network so as to maximise its transport capac-
ity subject to a power constraint. The power constraint relates
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to the network life-time and would depend on the application.
In a factory situation, it is possible that power could be sup-
plied to the devices, hence large power would be available. In
certain emergencies, "transient" sensor networks could be de-
ployed for situation management; we use the term "transient"
as these networks are supposed to exist for only several minutes
or hours, and the devices could be disposable. Such networks
need to have large throughputs, but, being transient networks,
the power constraint could again be loose. On the other hand
sensor networks deployed for monitoring some phenomenon in
a remote area would have to work with very small amounts of
power, while sacrificing transport capacity. Our formulation
aims at providing insights into optimal network operation in a
range of such scenarios.

A. Preview ofContributions
We motivate the definition of the transport capacity of the

network as the product of the aggregate throughput (in bits per
second) and the hop distance (in meters). For random spatio-
temporal fading, we seek the power control and the hop dis-
tance that jointly optimise the transport capacity, subject to a
network average power constraint. For a fixed data transmis-
sion time strategy (discussed in Section III-B), we show that
the optimal power allocation function has a water pouring form
(Section V-A). At the optimal operating point (power control
and hop distance) the network throughput (O opt, in bits per sec-
ond) is shown to be a fixed quantity, depending only on the con-
tention mechanism and fading model, but independent of the
network power constraint (Section V-B). Further, we show that
the optimal transport capacity is of the form dopt (Pt) x (0opt,
with dopt scaling as Pt , where Pt is the available time average
transmission power, and Ti is the power law path loss exponent
(Theorem V.2). Finally, we provide a condition on the fading
density that leads to a simple characterisation of the optimal
hop distance (Section V-C).

II. MOTIVATION FOR SINGLE CELL OPERATION

In this context, the seminal paper by Gupta and Kumar [4]
would suggest that each node should communicate with neigh-
bours as close as possible while maintaining network connec-
tivity. This maximises network transport capacity (in bit-metres
per second), while minimising network average power. It has
been observed by Dousse and Thiran [5], however, that if, un-
like [4], the practical model of bounded received power for fi-
nite transmitter power is used, then the increasing interference
with an increasing density of simultaneous transmitters is not
consistent with a minimum SINR requirement at each receiver.
The following discussion motivates a single cell operation in
our framework, i.e., only one transmission exists in the network
at any time.

Consider a dense planar wireless network with n nodes in a
square offixed area A. Let K(n) denote the spatial reuse in the
network (number of simultaneous transmissions) with r(K(n))
bounding the transmitter-receiver separation. Let P(K(n)) be
the transmitter power per node (with a network average power
P, as in Section V) and let N be the receiver noise power.
The maximum SINR achievable per link in such a network

(with single user decoding receivers) is bounded, i.e., SINR <
(NK( ))where IK(n,) denotes the interference at a node due
to spatial reuse. Using the finite (and fixed) area assumption, we
bound the minimum interference by any simultaneous transmis-
sion by P(K(n) Hence, SINR < (K(n))

(v2A)7 N±(K(n) l1)P(K(-)).Th
(2A) 2

aggregate capacity (bits/slot) achieved in such a network is now
bounded above by

C(K(n)): K((n) log ± N ± (K(n)-1)P )

Clearly, C(K(n)) is uniformly bounded for any K(n). Since
r(K(n)) < 2A, we see that the transport capacity (in bit-
metres per second, see Section IV) achieved in the network,
bounded above by C(K(n))r(K(n)), is also finite, indepen-
dent of the number of nodes and power P. Also, we ex-
pect that the transmitter-receiver separation (bounded above by
r(K(n))) would decrease to 0 as K(n) increases to oc (finite
area assumption). Hence, limK(n), C(K(n))r(K(n)) = 0.
This implies that there exists an optimal K(n), 1 < K(n) <
oo, which maximises the transport capacity in the network, i.e.,
the optimum spatial reuse is finite. However, we note that, with-
out spatial reuse, a simple TDMA scheme with direct trans-
missions between the source and the destination with transmit
power nP (and hence, an average power P), achieves log(n)
order transport capacity. As seen above, with spatial reuse, the
system becomes interference limited, and hence, becomes inef-
ficient both for large n and for large P. Thus, we conclude that
single cell operation (as defined earlier) is efficient for dense
networks with single user decoding. In the context of sen-
sor networks, log(n) scaling has been achieved with maximum
node power constraints as well, using cooperative transmission
techniques ([6]).

With the above motivation, in this work, we study the trans-
port capacity of power constrained dense ad hoc networks op-
erated as a single cell. More recently, El Gamal and Mam-
men [7] have shown that, if the transceiver energy at each hop
is factored in, then the operating regime studied in [4] is nei-
ther energy efficient nor delay optimal. Fewer hops between
the transmitter and receiver (and hence, less spatial reuse) re-
duce the energy consumption and lead to a better throughput-
delay tradeoff. While optimal operation of the network might
suggest using some spatial reuse (finite, as discussed above),
coordinating simultaneous transmissions (in a distributed fash-
ion), in a constrained area, is extremely difficult and the asso-
ciated time, energy and synchronisation overheads have to be
accounted for. In view of the above discussions, in this paper,
we assume that the multiple access control (MAC) is such that
only one transmitter-receiver pair communicate at any time in
the network.

A. Outline ofthe Paper
In Section III we describe the system model and in Section IV

we motivate the objective. We study the transport capacity of
a single cell multihop wireless network, operating in the fixed
transmission time mode, in Section V. Section VI concludes
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the paper and discusses future work. The proofs of all lemmas
and theorems, ifnot in the paper, are provided in [10].

III. THE NETWORK MODEL

There is a dense collection of immobile nodes that use mul-
tiaccess multihop radio communication with single user decod-
ing and packet forwarding to transport packets between various
source-destination pairs.

* All nodes use the same contention mechanism with the
same parameters (e.g., all nodes use IEEE 802.11 DCF
with the same back-off parameters).

* We assume that nodes send control packets (such as
RTS/CTS in IEEE 802.11) with a constant power (i.e.,
power control is not used for the control packets) during
contention, and these control packets are decodable by ev-
ery node in the network. As in IEEE 802.11, this can be
done by using a low rate, robust modulation scheme and by
restricting the diameter of the network. This is the "single
cell" assumption, also used in [1], and implies that there
can be only one successful ongoing transmission at any
time.

* During the control packet exchange, each transmitter
learns about the channel "gain" to its intended receiver,
and decides upon the power level that is used to transmit
its data packet. For example, in IEEE 802.11, the chan-
nel gain to the intended receiver could be estimated during
the RTS/CTS control packet exchange. Such channel in-
formation can then be used by the transmitter to do power
control. In our paper, we assume that such channel esti-
mation and power control is possible on a transmission-
by-transmission basis.

* In this work, we model only an average power constraint
and not a peak power constraint.

* We assume that the traffic is homogeneous in the network
and all the nodes have data to send at all times; these could
be locally generated packets or transit packets (saturation
assumption).

A. Channel Model: Path Loss, Fading and Transmission Rate

The channel gain between a transmitter-receiver pair for a
hop is a function of the hop length and the multipath fading
"gain" (h). Based on our dense network and traffic homogene-
ity assumption, we further make the following assumption.

* The nodes self-organise so that all hops are of length d,
i.e., a one hop transmission always traverses a distance of
d meters. This hop distance, d, will be one of our optimi-
sation variables.

The path loss for a hop distance d is given by d, where Ti is the
path loss exponent, chosen depending on the propagation char-
acteristics of the environment (see, for e.g., [8]). This variation
of path loss with d holds for d > do, the far field reference dis-
tance; we will assume that this inequality holds (d > do), and
will justify this assumption in the course of the analysis below
(see Theorem V.2).
We assume that for each transmitter-receiver pair, the chan-

nel gain due to multipath fading may change from transmission

to transmission, but remains constant over any packet transmis-
sion duration. Since successive transmissions can take place
between randomly selected pairs of nodes (as per the outcome
of the distributed contention mechanism) we are actually mod-
eling a spatio-temporal fading process. We assume that this
fading process is stationary in space and time with some given
marginal distribution H. Let the cumulative distribution of
H be A(h) (with a p.d.f. a(h)), which by our assumption
of spatio-temporal stationarity of fading is the same for all
transmitter-receiver pairs and for all transmissions. We assume
a flat and slow fading channel with additive white Gaussian
noise of power ca2. And, Tc, the channel coherence time ap-
plicable to all the links in the network, upper bounds the time
taken to complete any data transmission in the network. We
assume that H and Tc are independent of the hop distance d.
When a node transmits to another node at a distance d (in

the transmitting antenna's far field), using transmitter power P,
with channel power gain due to fading, h, then we assume that
the transmission rate given by Shannon's formula is achieved
over the transmission burst; i.e., the transmission rate is given
by

C hPac=wlog(1±cT2d)

where W is the signal bandwidth and a is a constant account-
ing for any fixed power gains between the transmitter and the
receiver. Note that this requires that the transmitter has avail-
able several coding schemes of different rates, one of which is
chosen for each channel state and power level.

B. Fixed Transmission Time Strategy
We focus on a fixed transmission time scheme, where all data

transmissions are of equal duration, independent of the bit rate
achieved over the wireless link. This implies that the amount
of data that a transmitter sends during a transmission opportu-
nity is proportional to the achieved physical link rate. Let T
(< Tc, the channel coherence time), be the data transmission
time. Upon a successful control packet exchange, the chan-
nel (between the transmitter, that "won" the contention, and its
intended receiver) is reserved for a duration of T seconds in-
dependent of the channel state h. This is akin to the "TxOP"
(transmission opportunity) mechanism in the IEEE 802.1 1 stan-
dard. Thus, when the power allocated during the channel state
h is P(h), and P(h) > 0, then data transmission occupies
the channel for the duration T seconds, sending C(h)T bits
across the channel, where C(h) = W log (I + P(2dT). If
P(h) = 0, we assume that the channel is left idle for the next
T seconds.

The optimality of a fixed transmission time scheme, for
throughput, as compared to a fixed packet length scheme, can
be formally established (see [10]), but, due to lack of space,
we only provide an intuition here. When using fixed packet
lengths, a transmitter may be forced to send the entire packet
even if the channel is poor, thus taking longer time and more
power. On the other hand, in a fixed transmission time scheme,
we send more data when the channel is good and limit our in-
efficiency when the channel is poor.
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IV. MULTIHOP TRANSPORT CAPACITY
Let d denote the common hop length and {P(h)} a power

allocation policy, with P(h) denoting the transmit power used
when the channel state is h. We take a simple model for the
random access channel contention process. The channel goes
through successive contention periods. Each period can be ei-
ther an idle slot, or a collision period, or a successful trans-
mission with probabilities pi, PC and ps respectively. Under the
node saturation assumption, the aggregate bit rate carried by
the system, (2)T({P(h)}, d), for the hop distance d and power
allocation {P(h)}, is given by (see [2], or [1])

T ({P(h) } d):= Ps ((f0 l (h) dA(h) )
p1T1 ±p,T, ± p, (T0, ±T) (1)

where L(h) = C(h)T, and, Ti, T, and To are the average time
overheads associated with an idle slot, collision and data trans-
mission. For e.g., in IEEE 802.11 with the RTS/CTS mecha-
nism being used, a collision takes a fixed time independent of
the data transmission rate. We note that Pi, p, Pc, Ti, To, and T,
depend only on the parameters of the distributed contention
mechanism (MAC protocol), and not on any of the decision
variables that we consider.

With OT({P(h)},d) defined as in (1), we consider
OT(({P(h)}, d) x d as our measure of transport capacity of
the network. This measure can be motivated in several ways.
OT({P(h)}, d) is the rate at which bits are transmitted by the
network nodes. When transmitted successfully, each bit tra-
verses a distance d. Hence, OT(({P(h)}, d) x d is the rate
of spatial progress of the flow of bits in the network (in bit-
metres per second). Viewed alternatively, it is the weighted
average of the end-to-end flow throughput with respect to the
distance traversed. Suppose that a flow i covers a distance
Di with Di hops (assumed to be an integer for this argu-
ment). Let /i3OT({P(h)}, d) be the fraction of throughput of
the network that belongs to flow i. Then, OiET({P(h)},d) is the

d

end-to-end throughput for flow i and OiET({P(h),d) X Di
d

/iOT({P(h)} , d) x d is the end-to-endflow throughput for flow
i in bit-metres per second. Summing over all the flows, we have
OT({P (h)}, d) x d, the aggregate end-to-flow throughput in
bit-metres per second.

With the above motivation, our aim in this paper is to max-
imise the quantity OT({P(h)}, d) x d over the hop distance d
and over the power control {P(h)}, subject to a network aver-
age power constraint, P. We use a network power constraint
that accounts for the energy used in data transmission as well
as the energy overheads associated with communication.

V. OPTIMISING THE TRANSPORT CAPACITY

For a given {P(h) } and d, and the corresponding throughput
OT({P(h)}, d), the transport capacity in bit-meters per second,
which we will denote by 0 ({P(h)}, d), is given by

b({P(h)}, d) := OT({P(h)}, d) x d

Maximizing b(., -) involves optimizing over d, as well as
{P(h)}. However, we observe that, it would not be possible

to vary d with fading, as routes cannot vary at the fading time
scale. Hence, we propose to optimize first over {P(h)} for a
given d, and then optimize over d, i.e., we seek to solve the
following problem,

max max
d ffP(h)l:F(fP(h)})<P}

O({P(h)}, d) (2)

where the network average power, 1P({P(h) }), is given by,

'P(fP(h)l) :=

piEi +pcEc + ps (Eo + Tf0 P(h) dA(h) )
piTi +pcTc + p5(To + T) (3)

Ei,EC and E correspond to the energy overheads associ-
ated with an idle period, collision and successful transmission.
Thus, Ei denotes the total energy expended in the network over
an idle slot, E, denotes the total average energy expended by
the colliding nodes, as well as the idle energy of the idle nodes,
and E denotes the average energy expended in the success-
ful contention negotiation between the successful transmitter-
receiver pair, the receive energy at the receiver (in the radio and
in the packet processor), and the idle energy expended by all
the other nodes over the time To + T.

For a given d and power allocation {P(h)}, define the time
average transmission power, Pt ({P(h)}, d), and the time aver-
age overhead power, PO (which does not depend on {P(h)} or
d), as

Ps (f0ooP(h)dA(h) )T
Pt({P(h)},d) -= p1Ti +±pcTc + ps(To + T)

p ._ piEi +pcEc +psEo
°piTi + PCTC + Ps (To + T)

Then the network power constraint can be rewritten as

Pt({P(h)},d)<P -Po
where the right hand side does not depend on {P(h)} or d.
Observe that Pt(:= P -PO) is the time average transmission
power constraint.

A. Optimization over {P(h)} for afixedd
Consider the optimization problem

max O({P(h)},d)
{{P(h) }:P({P(h) }) <P}

(4)

The denominators of OT(., ) in (1) and of P in (3) are in-
dependent of d and the power control {P(h)}. Thus, with
d fixed, the optimization problem simplifies to maximizing
fo7 L(h) dA(h) or,

log (I+± (h)h) dA(h)

subject to the average power contraint,

j P(h) dA(h) < Pt
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where Pt is given by,

(piTi+PcTc+Ps(To+T))p-Pt': p,T P

Notice that Pt' is also independent of {P(h)} or d and is the
average transmit power constraint averaged only over the trans-
mission periods.

Without a peak power constraint, this is a well-known prob-
lem whose optimal solution has the water-pouring form (see
[3]). The optimal power allocation function {P(h)} is given by

P(h) (
ha 7

where A is obtained from the power constraint equation

I>f2d7
a(h)P(h)dh = Pt

The optimal power allocation is a nonrandomized policy, where
a node transmits with power P(h) every time the channel is in
state h (whenever P(h) > 0), or leaves the channel idle for h
such that P(h) = 0.

2) When the objective function (5) is unbounded, the opti-
mal solution occurs at d = oc (from the continuity re-
sults).

3) We note that, in practice, Ti > 2.
Theorem V2: The following hold for the problem in (5),
1) Without the constraint d > do, the optimum hop distance

dopt scales as (Pt') .
2) There is a value Ptin such that, for Pt > Ptlin,

dopt > do, and hence the optimal solution obeys the scal-
ing shown in 1).

3) For Pt' > Pt$mi, the optimum power control {P(h)} is
of the water pouring form and scales as Pt'.

4) For Pt' > Ptmi, the optimal transport capacity scales as

(Pt) .

Proof:
1) Let dopt be optimal for Pt' > 0. We claim that, for x >

0, x n dopt is optimal for the power constraint xPt'. For
suppose this was not so, it would mean that there exists
d > 0 such that

1

tz T7dopt
( p )-PtF
x 17 d JtJ7 dr(xPt' )<dF t~

B. Optimization over d

By defining 4?(h) : P(h), the problem of maximising the
throughput over power controls, for a fixed d, becomes

max log (I+ 2ah (h)) a(h)dh

subject to

j D(h)a(h)dh < d
Denoting by F (P-) the optimal value of this problem, the
problem of optimisation over the hop-length now becomes

maxd x F ()d \doJ(5

Theorem VI: In the problem defined by (5), the objective
d x F (Pt'), when viewed as a function of d, is continuously
differentiable. Further, when the channel fading random vari-
able, H, has a finite mean (E(H) < oo), then

1) limd,o d x F( ) = O and,
2) if in addition, Ti > 2, 12a (h) is continuously differ-

entiable and P(H > h) = 0 (12 ) for large h, then,

limd, d xdF(t ) ,o
Proof: The proofs of continuous differentiability of d x

Pt' ) 1) and 2) are provided in [10]. P
Remarks VI:
1) Under the conditions proposed in Theorem V. 1, it follows

that d x F (Pt) is bounded over d C [0, oo) and achieves
its maximum in d E (0, oo).

or, equivalently,

dptF(F P))
\\opt

< X dr( A
Vx(- 77 d)'n

which contradicts the hypothesis that d,pt is optimal for
Pt

2) Using the path loss model d , we see that for d < do, the
received power is scaled more than P, due to the factor
d77 and an do factor in a, i.e., the model over-estimates
the received power and the transport capacity. Hence, the
achieved transport capacity for d < do is definitely less
than d F(f') . The result now follows from the scaling
result in 1).

3) It follows from 1) that, if Pt scales by a factor x, then
the optimum d scales by xr , so that, at the optimum, P-'I
is unchanged. Hence the optimal {4 (h)} is unchanged,
which means that {P(h)} must scale by x. The water
pouring form is evident.

4) Again, by 1) and 2), if Pt scales by a factor x, then the
optimum d scales by . ,so that, at the optimum, P- is

unchanged. Thus F ( -) is unchanged, and the optimal
transport capacity scales as the optimum d, i.e., by the
factor x n .

Remarks V2:
The above theorem yields the following observations for the
fixed transmission time model.

1) As an illustration, withT7 = 3, in order to double the op-
timal transport capacity, we need to use 23 times the Pt '.
This would result in a considerable reduction in network
lifetime, assuming the same battery energy.
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Fig. 1. Plot of d x F ( 3) (linear scale) vs. d (log scale) for a channel with
two fading states hl, h2. The fading gains are hi = 100 and h2 = 0.5, with
probabilities ahl = 0.01 = 1-ah2 The function has 3 non-trivial stationary
points.

2) We observe that as the power constraint Pt' scales, the op-
timal bit rate carried in the network, F (Pt), stays con-
stant, but the optimal transport capacity increases since
the optimal hop length increases. Further, because of the
way the optimal power control and the optimal hop length
scale together, the nodes transmit at the same physical bit
rate in each fading state; see the proof of Theorem V.2
part 3). P

C. Characterisation ofthe Optimal d
By the results in Theorem V.1 we can conclude that the opti-

mal solution of the maximisation in (5) lies in the set of points
for which the derivative of d x F (Pt) is zero. For fixed Pt ,

define -F(d) :-Pt' Differentiating d x F(wF(d)), we obtain,
(see Appendix A)

d (d F (w(d)) F (w(d)) -Ir(d)A(w(d))

where A(wF) is the Lagrange multiplier for the optimisation
problem that yields F(7r(d)). Since d appears only via 7r(d),
we can view the right hand side as a function of -w. We are in-
terested in the zeros of the above expression. Clearly, -w = 0 is
a solution. This solution corresponds to the case d = oc; How-
ever, we are interested only in solutions of d E (0, oc), and
hence, we seek positive solutions of -w of F(-w) -rTrA(wF) = 0.

Remarks V3: The above analysis has been done for a contin-
uously distributed fading random variable H. The analysis can

be done for a discrete valued fading distribution as well, and
we provide this analysis in [10]. The following example then
illustrates that, in general, the function 1(-w) -rTjA(wF) = 0

can have multiple solutions. Consider a fading distribution that
takes two values: h1 100 and h2 = 0.5, with probabilities
ah1 = 0.01 1-ah2. Figure 1 plots d x F ( 1 ) for the sys-

tem with Ti 3. Notice that there are 3 stationary points other
than the trivial solution d = oo (which is not shown in the fig-
ure). Also, the maximising solution is not the first stationary
point (the stationary point close to 0). If, on the other hand,
ahl = 0.001 = 1 - ah2, we again have 3 stationary points, but
the optimal solution now is the first stationary point.

More generally, and still pursuing the discrete case, let N de-
note the set of fading states when the fading random variable is
discrete with a finite number of values; NX1 denotes the cardi-
nality ofN.

Theorem V3: There are at most 2 NE I1 stationary points of
d F(wF(d)) inO < d < oo.

Proof: See [10] for the related analysis and the proof of
this theorem. P
We conclude from the above discussion that it is difficult to

characterise the optimal solution when there are multiple sta-
tionary points. Hence we seek conditions for a unique positive
stationary point, which must then be the maximising solution.
In Appendix A, we have shown that the equation characterising
the stationary points, F(wF) -TrjA(-F) = 0, can be rewritten as

1

(log(y) 0 (6)

for f (x) a (ffj) 5, the density of the random variable

H '. Notice that wF does not appear in this expression. The solu-
tion directly yields the Lagarange multiplier of the throughput
maximisation problem for the optimal value ofhop length. The
following theorem guarantees the existence of atmost one sta-
tionary point of (6).

Theorem V4: If for any A1 > A2 > °, f( Ay,) is a strictly

monotonic decreasing function of y, then the objective function
d x F (P) has at most one stationary point dopt, 0 < dopt <
00.

Proof: The proof follows from Lemmas A. 1, and A.2 in
Appendix. P

Corollary VI: IfH has an exponential distribution and 7i >
2, then the objective in the optimisation problem of (5) has a
unique stationary point dopt E (0, oc), which achieves the max-
imum.

Proof: a(h) is of the form ,ue-ph and the monotonic-
ity hypothesis in Theorem V.4 holds for a(h). Also, from
Theorem V.1, we see that limd,o d x F17 = 0 and

limdO d x F (Pt)' 0.

Remarks V4: 1) Hence, for Ti > 2, for the Rayleigh fad-
ing model there exists a unique stationary point which
corresponds to the optimal operating point.

2) For P ' > in, and for the conditions in Theorem V.1
and V.4, let 7Fopt denote the unique stationary point of
(6). Then define F(wFopt) = Oopt. It follows from The-
orem V.2 that the optimal transport capacity takes the

1

form Pt ) " 0 opt, where 0 opt depends on a(h) and the

MAC parameters but not on P (or Pt).
3) Figure 2 numerically illustrates our results for Rayleigh

fading and Ti = 2. Scaling Pt by 4 scales the transport
capacity from 2.3 to 4.6, i.e., by 4 = v4 and similarly
for scaling Pt' by 9.

The uniqueness results guarantees that a distributed imple-
mentation of the optimization problem, if it converges, shall
converge to the unique stationary point, which is the optimal
solution.

A2
.TI(y 1))-f

A

dyy2 y
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Fig. 2. Plot ofd x F (d) (linear scale) vs. Xr (= d ) (log scale) for a fading

channel (with exponential distribution). We consider 3 power levels (Pt', 4Pt'
and 9Pt') and 2. The function has a unique optimum 'JUvpt (iTvpt 0.2)
for all the 3 cases.

VI. CONCLUSION

In this paper we have studied a problem of jointly optimal
power control and self-organisation in a single cell, dense, ad
hoc multihop wireless network. The self-organisation is in
terms of the hop distance used when relaying packets between
source-destination pairs.
We formulated the problem as one of maximising the trans-

port capacity of the network subject to an average power con-

straint. We showed that, for a fixed transmission time scheme,
there corresponds an intrinsic aggregate packet carrying capac-

ity at which the network operates at the optimal operating point,
independent of the average power constraint. We also obtained
the scaling law relating the optimal hop distance to the power

constraint, and hence relating the optimal transport capacity to
the power constraint (see Theorem V.2). Because of the way

the power control and the optimal hop length scale, the optimal
physical bit rate in each fading state is invariant with the power
constraint. In Theorem V.4 we provide a characterisation of
the optimal hop distance in cases in which the fading density
satisfies a certain monotonicity condition.
One motivation for our work is the optimal operation of sen-

sor networks. If a sensor network is supplied with external
power, or if the network is not required to have a long life-
time, then the value of the power constraint, P, can be large,
and a long hop distance will be used, yielding a large transport
capacity. On the other hand, if the sensor network runs on bat-
teries and needs to have a long life-time then P would be small,
yielding a small hop length. In both cases the optimal aggregate
bit rate carried by the network would be the same.

Future work on this topic will include developing a dis-
tributed algorithm for nodes to adapt themselves towards the
optimal operating point.
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APPENDIX
A. Stationary Points ofd x F (7r (d))

Recall that we defined -r(d) :P= t . Further, F(wr(d)) was

defined by
Oc): al ( 2)ahP(h)

F(F()):=maxj log (I+ 2 d a(h)dh (7)

where the maximum is over all power controls {P(h)} satisfy-
ing the constraint

J(h)aO(h)Odh < 7r(d) (8)

For ease of notation, let us use the substitution x := 'h. Write

~(X) =(( ) P(r) and f(x) a (Ja)2 . Note that

f (.) is the probability density ofthe random variable X: CH.
Then, equations (7) and (8) can be rewritten as

17(w) = max log(1 + xz(x))f (x)dx

and

j (x)f (x)dx < wF

This optimisation problem is one ofmaximising a convex func-
tional of { (x)}, subject to a linear constraint. The optimal so-

lution of the problem has water-pouring form, and the optimal
solution is given by,

where (ibaiA("w)
where A(w) is obtained from

00 1

X(7) VA(T)

I
+

J

I) f (x)dx:

Further, the derivative of the optimum value F(wF), w.r.t. IF, i.e.,
ar(w) = A(wF) (see Aubin [9]).

B7r

Let us now reintroduce the dependence on d, and consider
the problem of optimising d x F(wF(d)) over d. Differentiating
d F(wF(d)) w.r.t. d, we get,

a (d F(-r(d)) F (w(d)) + d
a
F(-F(d))

F (-(d)) + d
O

(wr(d)) x (d)

f /PF (w(d)) + d F'(7r(d)) dR+

F (-(d)) -TI(d)F'(w(d))

E.

~~~~~~~.
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where F'(wF) := 9F(w). Substituting F'(-F) = A(wF), we have,

a (dF(-(d)) = F(-(d))-T(d)A(-(d))

(17) provides the I (actually I(wF)) to be substituted in (16). Sub-
stituting for 17(w) (from (16)), and for I (from (17)), into the

q) right hand side of (9), dividing across by P(Z < 1), and using
the definition of El (.), we have,

The stationary points ofd x F (w(d)) are now obtained by equat-
ing the right hand side of (9) to zero. Note that since d appears
in this equation only as wr(d), we need only study the roots of
the equation

F(wF) - TI-wA(wF) = 0

log(P(w ±<(Z)))-E

log (pz<I + El(Z))
(10)

-1(log(Z)) - 7± G (Z)

-El(log(Z))- 7jw (
wr ± G, (Z)

We now proceed to obtain a characterisation ofthe stationary
points. Substituting the optimal solution in the expression of
F(wF) and A(wF), and suppressing the argument wF in A(wF), we
get,

F(w) j log (iD f (x)dx

with A being given by

Ja (

(1 1)

I ff(x)dx
x/

(12)

log (G?z) + I) El (Z)] + log (e- (log(z)))

Tw+Z
7r + G, (Z)

Rearranging terms, we get,

log (w G±G(Z)) + log (El(Z)e-El(log(Z)))

7r + G, (Z)
Using the substitution z 1, I 1, and defining g(z)

2f (1),we get,

F(w) jlog(-)g(z)dz (13)

with I (actually, I(wF)) being given by

wr (I z)g(z)dz (14)

We note that 9(.) is the density of the random variable Z
1 _ 2

X ctH
For a function t(.) ofthe random variable Z, define the oper-

ators El(.) and Gi(.) as

El (t(Z))

G1 (t(Z))

fo t(z)g(z)dz

fog(z)dz
1

a t(z)g(z)dz

Denote b, = log (Ei(Z)-Ej (log(Z)) ). Then, we have,

log (w G (Z)) + b Tw
7r + G, (Z)

0

Using (17), we have

G, (Z)
7r + G, (Z)

G, (Z)
IP(Z < 1)

El (Z)
I

which, with the previous equation, yields

log(E(Z)) + b 17(1 El (Z)) 0

Recall that I is actually I (wF). We now find that wF appears in the
equation only as I(wF). Hence we can view this as an equation
in the variable I (= X ). Rearranging terms, we get

-log( El (Z)) ±17El (Z) -(b1-TI)

Lemma A. 1. The roots of(10) are equivalentto obtaining the
roots of the equation

Exponentiating both sides, and substituting back for bl, yields

El (Z) El (Z)

rTG 1 (AZ - 1) = G 1 (log(AZ)) (15)

with 7 then being given by

= -)f (x)dx
Proof: Using the definitions of El(.) and Gi(.), (13) and

(14) simplify to

F (w) = log(l) P(Z < l) - G1(log(Z)) (16)

On cancelling El (Z), and transposing terms, we next obtain

( El (Z) _i)

or,

e O(El( 1 ))

Taking log on both sides, we have,

El (log (h))
7w = IP(Z < I) - G1(Z)

0

0

0

El(Z)c- El (log (Z)) C-77

c- El Oog( 'i ))

c- El Oog( zi ))

El
z I

Ti I(17)
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In terms of G, (.), this is equivalent to

TIG, G, (log( ))

which is the desired result after writing I = . X
We next address the question of a unique positive solution

of (15). The following lemma guarantees the existence of a
unique positive solution, when f (.), the density of fH, satisfies
a certain monotonicity condition.
Lemma A.2: (15) has at most one positive solution if for any

fA2)

A1 > A2 > 0, f ( ) is a strictly monotone decreasing function

of y.
Proof: Expanding G 1 (.), (15) becomes,

Iq (AZ 1)g(z)dz -j log(Az)g(z)dz= 0

Rewriting the equation in terms of f (.), we have,

Hence,

>1

f,Y c(y) Ibx (y)dy f1, c(y)bx (y)dy

i.e.,
f c(y) bx2 (y)dy f> 'I c(y) bx (y)dy

fy, c(y)bx2 (y)dy fy, c(y)bxl (y)dy

i.e., the ratio of the negative area of the integral to the positive
area ofthe integral is a strictly monotonic function of A. Hence,
as A decreases, the integral can cross 0 at most once, or, there
exists at most one (non-trivial) solution for (18). A

1

0

T z )- o( z)) Z/d 0

In this last equation change the variable to y := Az, yielding

A2 (A d
rjI(y 1))-yf A-Jdyy2 \y

0 (18)

Define c(y) := (log(y) -i(y -1)) y and bx(y) :

Thus, we are interested in a positive A that solves

1

c(y)bA (y)dy = °

Observe that limy-o c(y) =-oc and c(1) = 0. Further, there
exists a unique y' such that c(y) < 0 for all 0 < y < y' and
c(y) > 0 for all y' < y < 1. Since bx(y) > 0 for all y and A,
we have c(y)bA(y) < 0 for all 0 < y < y' and c(y)bA(y) > 0

for all y' < y < 1.
Consider A1, A2 such that A1 > A2 > 0. By hypothesis,

bA2 (y) iS a strictly monotone decreasing function of y. Hence,
bcl(y)b()
c(y)bA2 (y) is also a strictly monotone decreasing function of y.
We then have,

c(y) bx (y)dy

fA c(y) bx1 (y)dy

IC(y) 2
2 bx (y)dy

f' c(y) bx1 (y)dy

bx2 (y')

>bx, (yl)'
And,

f, c(y)bx2 (y)dy

f, c(y)bx1 (y)dy

, c(y) 6j {8} blx (y)dy

f, c(y)bx1 (y)dy

bx2 (y')
bx1 (yl)

1

(log(y)

A

8)
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