1080

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 5, OCTOBER 2008

Fixed Point Analysis of Single Cell IEEE 802.11e
WLANSs: Uniqueness and Multistability

Venkatesh Ramaiyan, Anurag Kumar, Fellow, IEEE, and Eitan Altman

Abstract—We consider the vector fixed point equations arising
out of the analysis of the saturation throughput of a single cell
IEEE 802.11e (EDCA) wireless local area network with nodes that
have different backoff parameters, including different Arbitration
InterFrame Space (AIFS) values. We consider balanced and un-
balanced solutions of the fixed point equations arising in homoge-
neous (i.e., one with the same backoff parameters) and nonhomo-
geneous networks. By a balanced fixed point, we mean one where
all coordinates are equal. We are concerned, in particular, with 1)
whether the fixed point is balanced within a class, and 2) whether
the fixed point is unique. Our simulations show that when multiple
unbalanced fixed points exist in a homogeneous system then the
time behavior of the system demonstrates severe short term unfair-
ness (or multistability). We provide a condition for the fixed point
solution to be balanced, and also a condition for uniqueness. We
then extend our general fixed point analysis to capture AIFS based
differentiation and the concept of virtual collision when there are
multiple queues per station; again a condition for uniqueness is es-
tablished. For the case of multiple queues per node, we find that
a model with as many nodes as there are queues, with one queue
per node, provides an excellent approximation. Implications for the
use of the fixed point formulation for performance analysis are also
discussed.

Index Terms—Performance of wireless LANs, saturation

throughput analysis of EDCA, short term unfairness.

1. INTRODUCTION

NEW COMPONENT of the IEEE 802.11e medium ac-
cess control (MAC) is an enhanced distributed channel
access (EDCA), which provides differentiated channel access
to packets by allowing different backoff parameters (see [3]).
Several traffic classes are supported, the classes being distin-
guished by different backoff parameters. Thus, whereas in the
legacy DCF all nodes have a single queue, and a single backoff
“state machine,” all with the same backoff parameters (we say
that the nodes are homogeneous), in EDCA the nodes can have
multiple queues with separate backoff state machines per queue
with different parameters, and hence are permitted to be nonho-
mogeneous.
This paper is concerned with the saturation throughput anal-
ysis of IEEE 802.11e (EDCA) wireless LANs. We consider a
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single cell network of IEEE 802.11e nodes (single cell meaning
that all nodes are within control channel range of each other),
with an ideal channel (without capture, fading or frame error)
and assume that packets are lost only due to collision of simul-
taneous transmissions. For ease of understanding, much of our
presentation is for the case in which each node has only one
EDCA queue of some access category. The analysis for the gen-
eral case of multiple EDCA queues (of different access cate-
gories) per node is provided in Section VII.

Much work has been reported on the performance evaluation
of EDCA to support differentiated service. Most of the analyt-
ical work reported has been based on a decoupling approxima-
tion proposed initially by Bianchi ([4]). While keeping this basic
decoupling approximation, in [2] Kumar et al. presented a sig-
nificant simplification and generalization of the analysis of the
IEEE 802.11 backoff mechanism. This analysis led to a certain
one dimensional fixed point equation for the collision proba-
bility experienced by the nodes in a homogeneous system. In
this paper we consider multidimensional fixed point equations
for a homogeneous system of nodes, and also for a nonhomo-
geneous system of nodes. The nonhomogeneity arises due to
different initial backoffs, or different backoff multipliers, or dif-
ferent amounts of time that nodes wait after a transmission be-
fore restarting their backoff counters (i.e., the AIFS (Arbitration
InterFrame Space) mechanism of IEEE 802.11e), or different
number of access categories per node.

Our approach in this paper builds upon the one provided in
[2]. The main contributions of this paper are the following.

1) We provide examples of homogeneous systems in which,
even though a unique balanced fixed point exists (i.e., a so-
lution in which all the coordinates are equal), there can be
multiple unbalanced fixed points, thus suggesting multista-
bility. We demonstrate by simulation that, in such cases,
significant short term unfairness can be observed and the
unique balanced fixed point fails to capture the system per-
formance.

2) Next, in the case where the backoff increases multiplica-
tively (as in IEEE 802.11 and IEEE 802.11e access cate-
gories AC_BE, AC_BK), we establish a simple sufficient
condition for the uniqueness of the solution of the multi-
dimensional fixed point equation in the homogeneous and
the nonhomogeneous cases. In particular, we do this for
the case of the AIFS mechanism with multiple access cat-
egories per node. The case of multiple access categories per
node presented here extends the material provided in [1].

3) Further, the fixed point approach as developed in this work
provides an elegant and easy way to study the performance
differentiation provided by the different backoff mecha-
nisms in EDCA (see the section on throughput differen-
tiation in [20]).
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1) A Survey of the Literature: There has been much research
activity on modeling the performance of IEEE 802.11 and in
particular of IEEE 802.11e medium access standards. The gen-
eral approach has been to extend the decoupling approxima-
tion introduced by Bianchi ([4]). Without modeling the AIFS
mechanism, the extension is straightforward. Only the initial
backoff, and the backoff multiplier (persistence factor) are mod-
eled. In [5]-[7], such a scheme is studied by extending Bianchi’s
Markov model per access category. In this paper, in Section III,
we will provide a generalization and simplification of this ap-
proach. We will then provide examples of homogeneous sys-
tems where nonunique fixed points can exist, demonstrate the
consequences of such nonuniqueness, and also obtain condi-
tions that guarantee uniqueness.

The AIFS technique is a further enhancement in IEEE
802.11e that provides a sort of priority to queues that have
smaller values of AIFS. After any transmission activity in the
channel, whereas high priority queues (with AIFS = DIFS)
wait only for DIFS (DCF Interframe Space) to resume
counting down their backoff counters, low priority queues
(with AIFS > DIFS) defer the initiation of countdown for
an additional AIFS-DIFS slots. Hence a high priority queue
decrements its backoff counter earlier than a low priority queue
and also has fewer collisions.

Among the approaches that have been proposed for mod-
eling the AIFS mechanism (for example, [8]-[13]) the ones in
[11]-[13] come much closer to capturing the service differen-
tiation provided by the AIFS feature. In [11] the authors pro-
pose a Markov model to capture both the backoff window ex-
pansion approach and AIFS. AIFS is modeled by expanding the
state-space of the Markov chain to include the number of slots
elapsed since the previous transmission attempt on the channel.
[12] uses a Markov chain on the number of slots elapsed since
the previous transmission to model AIFS based service differ-
entiation. In [13], the authors observe that the system exists in
states in which only nodes of certain access categories can at-
tempt transmission. The approach is to model the evolution of
these states as a Markov chain. The transition probabilities of
this Markov chain are obtained from the assumed, decoupled
attempt probabilities. This approach yields a fixed point formu-
lation. This is the approach we will discuss in Section VI. [10]
extends the Bianchi’s analysis to multiple access categories per
node case using the Markov chain approach.

We note that the analyses in [10], [11], and [13] are based
on Bianchi’s approach to modeling the residual backoff by a
Markov chain. In this paper, we have extended the simplifi-
cation reported in [2] (which was for a homogeneous system
of nodes) to nonhomogeneous nodes with different backoff pa-
rameters and AIFS based priority schemes. Also, we model the
case of multiple queues (of different access categories) per node.
Thus, in our work, we have provided a simplified and integrated
model to capture all the essential backoff based service differ-
entiation mechanisms of IEEE 802.11e.

In the previous literature on IEEE 802.11 and IEEE 802.11e,
it is assumed that the collision rate experienced by a queue of
any access category is constant over time. There appears to have
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been no attempt to study the phenomenon of short term unfair-
ness in the fixed point framework. A related work on Ethernet
[19] identifies short-term unfairness in the system by experi-
mentation and simulation, and suggests modifications to the pro-
tocol to eliminate it. Also, all the existing work assumes that the
collision probabilities of all the queues with identical access pa-
rameters are the same. Thus there appears to have been no earlier
work on studying the possibility of unbalanced solutions of the
fixed point equations. In addition, the possibility of nonunique-
ness of the solution of the fixed point equations arising in the
analyses seems to have been missed in the earlier literature. In
our work, we study the fixed point equations for IEEE 802.11e
networks and take into account all these possibilities.

2) Outline of the Paper: In Section II, we review the general-
ized backoff model that was first presented in [2]. In Section III,
we develop the multidimensional fixed point equations for the
homogeneous and nonhomogeneous cases (without AIFS), and
obtain the necessary and sufficient conditions satisfied by the
solutions to the fixed point equations. We provide examples in
Section IV to show that even in the homogeneous case there
can exist multiple unbalanced fixed points and show the conse-
quence of this. In Section V-A, we analyse the fixed point equa-
tions for a homogeneous system of nodes and obtain a condi-
tion for the existence of only one fixed point. In Sections V-B
and VI, we extend the analysis to nonhomogeneous system of
nodes, with different backoff parameters (including AIFS). In
Section VII we analyse the case of multiple EDCA queues per
node. Section VIII concludes the paper and discusses future
work. The proofs of all lemmas and theorems, if not in the paper,
are provided in [20].

II. GENERALIZED BACK-OFF MODEL

There are n nodes, indexed by 7,1 < 7 < n. We begin with
considering the case in which each node has one EDCA queue.
We adopt the notation in [2], whose authors consider a gener-
alization of the backoff behavior of the nodes, and define the
following backoff parameters (for node 7)

K; := At the (K; + 1)th attempt either the packet being
attempted by node 7 succeeds or is discarded

bi 1. := The mean backoff (in slots) at the kth attempt for a
packet being attempted by node 7, 0 < k < K;;

Definition 2.1: A system of n nodes is said to be homoge-
neous, if all the backoff parameters of the nodes, like, K, b; 1,
0 < k < K, are the same for all 7,1 < ¢ < n. A system of
nodes is called nonhomogeneous if the backoff parameters of
the nodes are not identical. ]

Remark: 1EEE 802.11e permits different backoff parameters
to differentiate channel access obtained by the nodes in an at-
tempt to provide QoS. The above definitions capture the possi-
bility of having different CWy,;, and CWi,.x values, different
exponential backoff multiplier values and even different number
of permitted attempts. For ease of discussion and understanding,
we will postpone the topic of AIFS until Section VI. Hence in
the discussions up to Section V-B, all the nodes wait only for a
DIFS after a busy channel. ]
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It has been shown in [2] (and later in [18]) that under the de-
coupling assumption, introduced by Bianchi in [4], the attempt
probability of node ¢ (in a backoff slot, and conditioned on being
in backoff) for given collision probability -y; is given by

L7449

Gi(’Yi) = - .
bio +%ibi1 + -+ 77 bi K,

ey

Remarks 2.1:

1) We will assume that b; . are such that 0 < G;(y;) < 1 for
all ;, 0 < ; < 1 and G;(;) < 1 whenever ; > 0.

2) When the system is homogeneous then we will drop the

subscript 7 from G;(-), and write the function simply as
G().

III. FIXED POINT EQUATION

It is important to note that in the present discussion all rates
are conditioned on being in the backoff periods; i.e., we have
eliminated all durations other than those in which nodes are
counting down their backoff counters, in order to obtain the
collision probability «; of node ¢ and its attempt probability
Bi (= Gi(v;)). Later one brings back the channel activity pe-
riods in order to compute the throughput in terms of the attempt
probabilities (see [2]). Now consider a nonhomogeneous system
of n nodes. Let 7 be the vector of collision probabilities of the
nodes. With the slotted model for the backoff process and the de-
coupling assumption, the natural mapping of the attempt prob-
abilities of other nodes to the collision probability of a node is
given by

% =Ti(B1, B, ) =1— [ (1=55)

=1

where 3; = G;(v;). We could now expect that the equilibrium
behavior of the system will be characterized by the solutions of
the following system of equations. For 1 < i < n

vi = Li(Gi(n), -+ Galm))-

We write these n equations compactly in the form of the fol-
lowing multidimensional fixed point equation:

7 =T(G(7)). )

Since I'(G (7)) is a composition of continuous functions it is
continuous. We thus have a continuous mapping from [0, 1]™ to
[0, 1]™. Hence by Brouwer’s fixed point theorem there exists a
fixed point in [0, 1]™ for the equation v = I'(G(%)).

Consider the ¢th component of the fixed point equation, i.e.,

v=1- JI -Gt
1<j<n, j#i
or equivalently
1-vw)= J[ -6t
1<j<n,j#i
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Multiplying both sides by (1 — G;(7;)), we get

1-vw)A-Giw) =[] 0 -GiM).

1<j<n

Thus a necessary and sufficient condition for a vector of colli-
sion probabilities Y = (1, ..,7x) to be a fixed point solution
isthat, foralll < i <n

(1 =7)1 = Gi(v)) = H(l - Gi(7))) 3

where the right-hand side is seen to be independent of <.
Define F;(v) := (1 —v)(1 — G;()). From (3) we see that if
4 is a solution of (2), then for all ¢, j, 1 < 4,5 < n

Fi(vi) = Fj(7;)- “4)

Notice that this is only a necessary condition. For example, in

a homogeneous system of nodes, the vector 7 such that v; =

for all 1 < ¢ < n, satisfies (4) for any 0 < v < 1, but not all

such points are solutions of the fixed point (2).

Definition 3.1: We say that a fixed point 4 (i.e., a solution of

v = I'(G(v))) is balanced if v; = ~y; forall 1 < ¢,j < n;

otherwise, 4 is said to be an unbalanced fixed point.

Remarks 3.1:

1) Itis clear that if there exists an unbalanced fixed point for
a homogeneous system, then every permutation is also a
fixed point and hence, in such cases, we do not have a
unique fixed point.

2) In the homogeneous case, by symmetry, the average col-
lision probability must be the same for every node. If the
collision probabilities correspond to a fixed point (see 3,
next), then this fixed point will be of the form (v, 7, ...,7)
where v solves v = T'(G(y)) (since T';(-) = T'(-) and

Gi(-) = G(-) forall 1 < i < n). Such a fixed point of
~v = I'(G(7)) is guaranteed by Brouwer’s fixed point the-
orem. The uniqueness of such a balanced fixed point was
studied in [2]. We reproduce this result in Theorem 5.1.

3) There is, however, the possibility that even in the ho-
mogeneous case, there is an unbalanced solution of
v = I'(G(%)). By simulation examples we observe in
Section IV that when there exist unbalanced fixed points,
the balanced fixed point of the system does not charac-
terize the average performance, even if there exists only
one balanced fixed point. In Section V-A, we provide
a condition for homogeneous IEEE 802.11 and IEEE
802.11e type nodes (with exponential backoff) under
which there is a unique balanced fixed point and no unbal-
anced fixed point. In such cases, it is now well established,
that the unique balanced fixed point accurately predicts
the saturation throughput of the system.

4) For the homogeneous case the backoff process can be ex-
actly modeled by a positive recurrent Markov chain (see
[2]). Hence the attempt and collision processes will be er-
godic and, by symmetry, the nodes will have equal attempt
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Fig. 1. Example System-I. (a) Balanced fixed point. Plots of G(7), F(v) = (1 — 7)(1 = G(v)) and 1 — (1 — G(~))?® versus the collision probability v; we
also show the “y = z” line. (b) Demonstration of unbalanced fixed points. Plots of 7> = 1 — (1 — G(7))® (1 — G (1 — (1 — G())?)) (the curve drawn with
dots and lines) and the function for the fixed point equation for y; (see text) using pluses and lines. (c) Snap-shot of short term average collision probability of 2
of the 10 nodes. Also plotted is the average collision probability of the nodes (averaged over all frames and nodes). The 95% confidence interval for the average

collision probability lies within 0.7% of the mean value.

and collision probabilities. In such a situation the existence
of multiple unbalanced fixed points will suggest short term
unfairness or multistability. We will observe this phenom-
enon in Section IV.

5) Consider a system of homogeneous nodes having unbal-
anced solutions for the fixed point equation y = I'(G(7y))
(i.e., there exists 7, 7 such that y; # -y;), then from (4), we
see that F'(y;) = F(v;), or the function F is many-to-one.
Hence for a homogeneous system of nodes, if the function
F is one-to-one then there cannot exist unbalanced fixed
points. In Section V-B we use this observation to obtain a
sufficient condition for the uniqueness of the fixed point
for the nonhomogeneous case.

IV. NONUNIQUE FIXED POINTS AND MULTISTABILITY:
SIMULATION EXAMPLES
A. Example 1
Consider a homogeneous system (let us call it System-I) with
n = 10 nodes. The function G(-) of the nodes is given by
B L+ +P2 4+ + -
L+y+72+93+64(y4 +9°+ 1)

G(v)

The system corresponds to the case where K = oo, by =
bl = b2 = b3 = 1andb4 = b5 = bG = - = 64(bL are dis-
tributed uniformly over the integers in [1, CW;] for appropriate
CW;,). From the form of function G(-), we can see that a node
which is currently at backoff stage 0 is more likely to remain
at that stage as it takes 4 successive collisions to make the at-
tempt rate of the node < 1. Likewise, a node that is in the larger
backoff stages by = b5 = --- = 64, will retry continuously
with mean inter-attempt slots of 64 until it succeeds. Observe
that only one node can be at backoff stage 0 at any time. This
leads to the apparent multistability of the system.

Fig. 1(a) plots G(7), the corresponding F(y) = (1 —v)(1 —
G(7)) and shows the balanced fixed point of the system for n =
10 nodes. The balanced fixed point of the system shown in the
figure is obtained using the fixed point equation y = 1 — (1 —
G(7))°. Observe that the function F'(-) is not one-to-one (the

function F'(-) not being one-to-one does not imply that there
exist multiple fixed point solutions; see Remarks 3.1, 5).

Fig. 1(b) shows the existence of unbalanced fixed points for
System-1. These fixed points are obtained as follows. Assume
that we are interested in fixed points such thaty; # v = --- =
Yn. Given yo = --- = 7,, the attempt probability of the nodes
2,...,nis given by G(v2). Hence, the collision probability of
node 1 is given by v1 = 1 — (1 — G(v2))"~*. The attempt prob-
ability of node 1 would then be G(y1). Using the decoupling
assumption, the collision probability of any of the other n — 1
nodes would then be, 1 — (1 — G(72))" " 2(1 — G(71)) = 2.
Thus we obtain a fixed point equation for v, (and hence for
all the other v;, 3 < j < n). In Fig. 1(b) we plot 1 — (1 —
G(7))® (1 -G (1-(1-G(7))%) (plotted as the line marked
with dots), the intersection of which with the “y = 2 line shows
the solutions for v2(= - - - = ~,,). In the same way, we obtain the
fixed point equation for y; by eliminating ~s, . . ., "y, from the
multidimensional system of equations. This functiton is plotted
in Fig. 1(b) using pluses and lines and the intersection of this
curve with the “y = z” line shows the corresponding solutions
for 1. We see that there are three solutions in each case. The
smallest values of ; (approx. 0.14) pairs up with the largest
value of y2 = - -+ =, (approx. 0.97). Notice that the balanced
fixed point of the system is also a fixed point in the plot (compare
with Fig. 1(a)). Then there is one remaining unbalanced fixed
point whose values can be read off the plot. We note that there
could exist many other unbalanced fixed points for this system
of equations, as we have considered only a particular variety of
fixed points that have the property that y; # v = -+ - = 7,,.

In order to examine the consequences of multiple unbalanced
fixed points we simulated the backoff process with the backoff
parameters of System-I. The following remarks summarize our
simulation approach in this paper.

Remarks 4.1 (On the Simulation Approach Used):

1) We have developed an event-driven simulator written in
the “C” language based on the coupled multidimensional
backoff process of the various nodes, to compare with the
analytical results. In this simulator, we do not simulate the
detailed wireless LAN system (as is done in an ns-2 simu-
lator), but only the backoff slots. We will refer to this as the
CMP (Coupled Markov Process) simulator. The main aim
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Fig. 2. Example System-IL (a) The balanced fixed point. Plots of G(v), F(7) = (1 — v)(1 — G(v)) and 1 — (1 — G(7))*® versus the collision proba-
bility +; the line “y = & is also shown. Notice that the function F is not one-to-one. (b) Demonstration of unbalanced fixed points. Plots of v = 1 — (1 —
G(v))'® (1 —G(1—(1— G(7))")) (the curve drawn with dots and lines) and the function for the fixed point equation for y; (see text) using pluses and lines.
(c) Snap-shot of short term average collision probability of 2 of the 20 nodes. The average collision probability is also plotted in the figure (averaged over all slots
and nodes). The 95% confidence interval for the average collision rate lies within 0.7% of the mean value.

2)

3)

4)

of the CMP simulator is to understand the backoff behavior
of the nodes and its dependence on the different backoff pa-
rameters. From the point of view of performance analysis,
it may also be noted that once the backoff behavior is cor-
rectly modelled the channel activity can easily be added
analytically, and thus throughput results can be obtained
(see [4] and [2]). Note that, for IEEE 802.11 type net-
works, a good match between analysis that uses a decou-
pled Markov model for the backoff process and ns-2 simu-
lations has already been reported in earlier works (see the
literature survey in Section I). In addition, in Section VI,
ns-2 simulation results have also been provided in com-
parison with the CMP simulator and the analytical results.
Our CMP simulator is programmed as follows. The system
evolves over backoff slots. All the nodes are assumed to be
in perfect slot synchronization. The actual coupled evolu-
tion of the backoff process is modeled. The backoff distri-
bution is uniform and the residual backoff time is the state
for each node. At every slot, depending on the state of the
backoff process, there are three possibilities: the slot is idle,
there is a successful transmission, or there is a collision.
This causes further evolution of the backoff process.

Our CMP simulator, which we primarily use to study the
backoff behavior of the nodes, takes a few seconds to com-
plete a simulation run, in comparison with the ns-2 simu-
lations which takes any time between few minutes to an
hour depending on the number of nodes in the system.
The coupled backoff evolution approach we use captures
all the essential features of a single cell system with ideal
channel (no capture, fading or frame error) and where there
is perfect synchronization among the nodes (typical for
single cell systems). The simulation provides the attempt
rates and collision probabilities directly, which can be used
with the throughput formula provided in [2] to obtain the
throughput of the nodes.

In all our simulations, b; are distributed uniformly over the
integers in [1, CW;] for appropriate CW;. We note here
that the backoff behavior of IEEE 802.11e EDCA with the

backoff range [0, CW] can be modeled in the same way as
IEEE 802.11 DCF with the backoff range [1, CW + 1] and
the value of AIFS reduced by 1 (see [13], [17]). Thus, the
“0 sampling problem” found in IEEE 802.11 DCF is not
observed in IEEE 802.11e EDCA, see the technical report
[20] for further details.

5) In Figs. 1(c)-3(b), for the purpose of reporting the short
term unfairness results, the entire duration of simulation
is divided into k£ frames, where the size of each frame
is 10,000 slots. The short-term average of the collision
probability of each node j,1 < j < n, is calculated as
i? 8 where C; (i) and A;(7) correspond to the number
of collisions and attempts in frame ¢,1 < ¢ < k, for
node j. The long-term average is similarly calculated as

n LG
tice that theilzolng-term average collision rate is a batch bi-
ased average of the short-term collision rates. Hence, when
looking at the graphs, it will be incorrect to visually av-
erage the short-term collision rate plots in an attempt to
obtain the long-term average collision rate. This is because
when a node is shown to have a low collision probability,
it is the one that is attempting every slot (while the other
nodes attempt with a mean gap of 64 slots), and hence it
sees a low probability of collision. In this case A;(-) is
large and C;(-) < A;(-). On the other hand, when a node
is shown to have a high collision probability it is attempting
at an average rate of 6i4 and almost all its attempts collide
with the node that is then attempting in every slot. In this
case A;(-) is small and C(-) ~ 1. Thus, in obtaining the
overall average, it is essential to account for the large vari-
ation in A;(-) between the two cases. [

In Fig. 1(c) we plot a (simulation) snap shot of the short term
average collision probability of 2 of the 10 nodes of System-I
and the average collision probability of the nodes (The average
is calculated over all frames and all nodes. Since the nodes are
identical, the average collision probability is the same for all the
nodes). Observe that the short term average has a huge variance

where n is the number of nodes. No-
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Fig. 3. Example System-IIL:. (a) Plots of G(7), F(7) = (1 —7)(1 — G(y)) and 1 — (1 — G(~))? versus the collision probability 7; the line “y = z” is also
shown. (b) Snap-shot of short term average collision probability of 2 of the 10 nodes. Also plotted is the average collision probabilty obtained by the nodes. The
95% confidence interval of the average collision rate lies within 0.2% of the mean value. (c) Throughput fairness index of Example III compared with Examples I
and II, plotted against the number of slots used to measure throughput. The dotted lines mark the 95% confidence interval for all the three example systems.

around the long term average. It is evident that over 1000’s of
slots one node or the other monopolizes the channel (and the
remaining nodes see a collision probability of 1 during those
slots). This could be described as multistability. A look into the
fairness index (see Fig. 3(c)) plotted as a function of the frame
size used to calculate throughput suggests that System-I exhibits
significant unfairness in service even over reasonably large time
intervals.

1) Implication for the Use of the Balanced Fixed Point: No-
tice also that the average collision rate shown in Fig. 1(c) is
about 0.25, whereas the balanced fixed point shown in Fig. 1(a)
shows a collision probability of about 0.62. Hence we see that
in this case, where there are multiple fixed points, the balanced
fixed point does not capture the actual system performance.

B. Example 2

Let us now consider yet another homogeneous example (let
us call it System-II) with n = 20 nodes. The function G(-) of
the nodes is given by

_ Tyt +- 497
143y + 92 2793 4 4 21877

G(7)

The system corresponds to the case where K = 7, by = 1,
p = 3and b, = pFby forall 0 < k < K (b; are uniformly
distributed in [1, CW;] for appropriate CW;). We notice that
in this example the way the backoff expands is similar to the
way it expands in the IEEE 802.11 standard, except that the
initial backoff is very small (1 slot) and the multiplier is 3, rather
than 2. Fig. 2(a) plots G(7), the corresponding F(y) = (1 —
7)(1 — G(~)) and the balanced fixed point of the system for
n = 20 nodes. The balanced fixed point of the system shown
in the figure is obtained using the fixed point equation vy = 1 —
(1= Gy)".

As in the case of System-I, Fig. 2(b) shows the existence of
multiple unbalanced fixed points for System-II. The fixed points
we have shown correspond to the case where y; # v = - -+ =
v, and are obtained just as discussed for System-I.

Fig. 2(c) plots a snap shot of the short term average collision
probability (from simulation) of 2 of the 20 nodes and the av-
erage collision probability of the nodes (same for all the nodes).
Observe that the short term averages vary a lot as compared to
the long term average, suggesting multistability. Again, as in the
case of System-I, comparing the average collision probability
with the balanced fixed point of the system in Fig. 2(a), we see
that the fixed point does not capture the actual system perfor-
mance.

Discussion of Examples I and 2: From the simulation exam-
ples, we can make the following inferences.

1) When there are multiple unbalanced fixed points in a ho-
mogeneous system then the system can display multista-
bility, which manifests itself as significant short term un-
fairness in channel access.

2) When there are multiple unbalanced fixed points in a ho-
mogeneous system then the collision probability obtained
from the balanced fixed point may be a poor approxima-
tion to the long term average collision probability.

Similar conclusions can be drawn for nonhomogeneous sys-
tems when the system of fixed point equations have multiple
solutions. ]

It appears that the existence of multiple-fixed points is a con-
sequence of the form of the G(-) function in the above examples,
where G(-) is similar to a switching curve; see, for example,
Fig. 1(a) where there is a very high attempt probability at low
collision probabilities and a very low attempt probability at high
collision probabilities.

C. Example 3

Consider a homogeneous system in which backoff increases
multiplicatively as in IEEE 802.11 DCF (let us call it System-
III), with n = 10 nodes. The function G(-) is given by

G(r) = L+y+9+--- 477
T 16432y + 6472 + - + 204877

The system corresponds to the case where K = 7, p = 2 and
bo = 16 and b, = p*bo forall 0 < k < K (b; are uniformly
distributed in [1, CW;] for appropriate CW;). These parameters
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are similar to those used in the IEEE 802.11 standard. Fig. 3(a)
plots G(+), the corresponding F'(v) = (1 — v)(1 — G(~)) and
the unique balanced fixed point of the system. (Notice that F’ is
one-to-one and uniqueness of the fixed point will be proved in
Section V-A.) The balanced fixed point of the system is obtained
using the fixed point equation v = 1 — (1 — G())?. The bal-
anced fixed point yields a collision probability of approximately
0.29.

Fig. 3(b) plots a snap shot of the short term average colli-
sion probability (from simulation) of 2 of the 10 nodes and
the average collision probability of the nodes of the Example
System-III. Notice that the short term average collision rate is
close to the average collision rate (the vertical scale in this figure
is much finer than in the corresponding figures for System-I and
System-II). Also, the average collision rate matches well with
the balanced fixed point solution obtained in Fig. 3(a).

Remark: Thus we see that in a situation in which there is a
unique fixed point not only is there lack of multistability, but
also the fixed point solution yields a good approximation to the
long run average behavior.

D. Short Term Fairness in Examples 1, 2 and 3

(2 m)°

Fig. 3(c) plots the throughput fairness index % o

(where 7; is the average throughput of node ¢ over the measure-
ment frame, see [16]) against the frame size used to measure
throughput. The fairness index is obtained for each frame and
is averaged over the duration of the simulation. Also plotted in
the figure is the 95% confidence interval. We note that values of
this index will lie in the interval [0, 1], and smaller values of the
index correspond to greater unfairness between the nodes. The
performance of all the three example systems are compared. No-
tice that the Example System-III (similar to IEEE 802.11 DCF)
has the best fairness properties. The system achieves fairness
of 0.9 over 1000’s of slots. However, for Example System-I
and II, similar performance is achieved only over 1,000,000 and
100,000 slots. The unfairness of Example Systems-I and II can
be attributed to their apparent multistability.

In Section V we establish conditions for the uniqueness of the
solutions to the multidimensional fixed point equation.

V. ANALYSIS OF THE FIXED POINT

A. The Homogeneous Case

The following two results are adopted from [2].

Lemma 5.1: G(v) is nonincreasing in v if by, k > 0, is a
nondecreasing sequence. In that case, unless by, = by for all k,
G(7y) is strictly decreasing in 7. |

Theorem 5.1: For a homogeneous system of nodes,
I'(G(v)) : [0,1] — [0, 1], has a unique fixed point if by, k > 0,
is a nondecreasing sequence. [ |

Remark: The fixed point (y,7, .. .,v) (wWhere v = I'(G(7)))
is the unique balanced fixed point for vy = I'(G(7)). From
(4), we see that a necessary condition for the existence of un-
balanced fixed points in a homogeneous system of nodes is
that the function F(y) = (1 — 4)(1 — G(y)) needs to be
many-to-one. In other words, if the function (1 —v)(1 — G(v))
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is one-to-one and if ¥ = (vy1,72,...,7x) is a solution of the
system oy = I'(G(vy)), then ~y; = ~y; for all , j. [ ]

Consider the exponentially increasing backoff case for which
G(-) is given by

L+y+72 4 +7F
bo(1+py +p*y2 + -+ 4+ pKaK)

G(vy) = Q)

Clearly, G(v) is a continuously differentiable function and so is
F(y) = (1 —4)(1 — G(v)). The following simple lemma is a
consequence of the mean value theorem.
Lemma 5.2: f(~y) is one-to-onein 0 < v < 1if F'(y) # 0
forall 0 <~ < 1. |
Remarks 5.1: When F(-) is one-to-one in 0 < v < 1 and
G(-)issuchthat0 < G(y) < 1forall 0 < 7 < 1, the following
hold
1) F(y)=0iffy = 1;
2) F(0) > 0;
3) F(v) is a decreasing function of ~.

Now the derivative of F' is
F'(y) = =14+ G(v) = G'(v)(1 =)

Lemma 5.3: f K > 1,p > 2 and G(+) is as in (5), then
2
G'(y) < 0and |G'(v)| < & forall0 <y < 1.
Proof: See Technical Report [20]. |
Clearly, G(v) < % and1 > (1 —v) >0forall0 <~ < 1.
Substituting into the expression for F’(vy), we get,

1+2p
bo

Fl(y) < -1+

Thus, if in addition to the other condition in Lemma 5.3, if by >
1+ 2p, then F’(v) < 0 and the following result holds by virtue
of the remark following Theorem 5.1.

Theorem 5.2: For a function G(-) defined as in (5) if K > 1,
p > 2and by > 2p + 1, then the system ¥ = I'(G(7)) has a
unique fixed point which is balanced. ]

Remark: Tt can be shown that if Lemma 5.3 holds for G(-) as
in (5) it also holds for any case in which b, = pFby for0 < k <
m < K and by = p™by for m < k < K. The latter situation
closely matches the IEEE 802.11 standard (with by = 16,p = 2,
K =7, m = 5). Hence a homogeneous IEEE 802.11 WLAN
has a unique fixed point which is also balanced. In general, if the
function G(-) is arbitrary (as in (1)) but monotone decreasing,
then there exists a unique balanced fixed point for the system
whenever the function (1 — v)(1 — G(v)) is one-to-one.

B. The Nonhomogeneous Case

In this section, we will extend our results to systems with
nonhomogeneous nodes. AIFS will be introduced in Section VI.
Nonhomogeneity is introduced by using different values of by,
p and K in different nodes.

Consider a nonhomogeneous system of » nodes, with G;(-)
a monotonically decreasing function and F;(7y) := (1 —~)(1 —
G;(~)) being one-to-one for all 4. Let there be two fixed point
solutions 4y = (1,72, ...,7n) and A = (A1, Aa,..., \p) for
the above system (see Section III for the fixed point equations),
and there exists k,1 < k < n, such that v, # Aj. From the
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necessary condition (4) we require that, for all ¢, and for some
J1 > 0and Jo > 0 (clearly, J1, Jo # 0, see Remarks 5.1)

(1=7%)1=Gi(vi)) =]
(1= A)(1 = Gi(A)) = o

Since (1 — v)(1 — G;(~)) is one-to-one, applying this to 7
and Ay, we require .J; # Jo. Without loss of generality, assume
J1 < Js. Hence, y; > A; for all 7 (see Remarks 5.1). Using (3)
we have

ri=1-T0-65)
i
>1- [t -Gi(v)
i
="

a contradiction. Hence, it must be that J; = J5 or there exists a
unique fixed point.

Notice that the arguments above immediately imply the fol-
lowing result.

Theorem 5.3: If G;(vy) is a decreasing function of v for all
and (1 —+)(1—G;(v)) is a strictly monotone function on [0, 1],
then the system of equations 3; = G;(y;) and v; = T';(B4, - - .,
Bi, ..., Fn) has a unique fixed point. [ |

Where nodes use exponentially increasing backoff, the next
result then follows.

Theorem 5.4: For a system of nodes 1 < i < n, with G;(+)
as in (5), that satisfy K; > 1, p; > 2 and by, > 2p; + 1,
there exists a unique fixed point for the system of equations,
Yi = 1-— Hj;éi(l — Gj(’}/j)) for 1 S 1 S n.

Remark: The above result has relevance in the context of the
IEEE 802.11e standard where the proposal is to use differences
in backoff parameters to differentiate the throughputs obtained
by the various nodes. While Theorem 5.4 only states a sufficient
condition, it does point to a caution in choosing the backoff pa-
rameters of the nodes.

VI. ANALYSIS OF THE AIFS MECHANISM

Our approach for obtaining the fixed point equations when the
AIFS mechanism is included is the same as the one developed
in [13]. However, we develop the analysis in the more general
framework introduced in [2] and extended here in Section III.
We show that under the condition that F'(-) is one-to-one there
exists a unique fixed point for this problem as well. The anal-
ysis is presented here for two different AIFS class case, but can
be extended to any number of classes. Also in this section, we
consider only the case in which there is one queue (of an AIFS
class) in each node. Extension to the case of multiple queues per
node is done in Section VIL

Let us begin by recalling the basic idea of AIFS based service
differentiation (see [3]). In legacy DCF, a node decrements
its backoff counter, and then attempts to transmit only after it
senses an idle medium for more than a DCF interframe space
(DIFS). However, in EDCA (Enhanced Distributed Channel
Access), based on the access category of a node (and its AIFS
value), a node attempts to transmit only after it senses the
medium idle for more than its AIFS. Higher priority nodes
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have smaller values of AIFS, and hence obtain a lower average
collision probability, since these nodes can decrement their
backoff counters, and even transmit, in slots in which lower
priority nodes (waiting to complete their AIFSs) cannot. Thus,
nodes of higher priority (lower AIFS) not only tend to transmit
more often but also have fewer collisions compared to nodes of
lower priority (larger AIFS). The model we use to analyze the
AIFS mechanism is quite general and accomodates the actual
nuances of AIFS implementations (see [14] for how AIFS and
DIFS differs) when the AIFS parameter value and the sampled
backoff value is suitably adjusted (see technical report [20] for
details).

A. The Fixed Point Equations

Let us consider two classes of nodes of two different priori-
ties. The priority for a class is supported by using AIFS as well
as bg, p and K. All the nodes of a particular priority have the
same values for all these parameters. There are n(!) nodes of
Class 1 and n(?) nodes of Class 0. Class 1 corresponds to a
higher priority of service. The AIFS for Class 0 exceeds the
AIFS of Class 1 by [ slots. Thus, after every transmission ac-
tivity in the channel, while Class 0 nodes wait to complete their
AIFS, Class 1 nodes can attempt to transmit in those [ slots.
Also, if there is any transmission activity (by Class 1 nodes)
during those [ slots, then again the Class 0 nodes wait for an-
other additional [ slots compared to the Class 1 nodes, and so
on.

As in [4] and [2], we need to model only the evolution of the
backoff process of a node (i.e., the backoff slots after removing
any channel activity such as transmissions or collisions) to ob-
tain the collision probabilities. For convenience, let us call the
slots in which only Class 1 nodes can attempt as excess AIF'S
slots, which will correspond to the subscript F' A in the nota-
tion. In the remaining slots (corresponding to the subscript I
in the notation) nodes of either class can attempt. Let us view
such groups of slots, where different sets of nodes contend for
the channel, as different contention periods. Let us define

[J,L-(l) := the attempt probability of a Class 1 node for all
i,1 <1 < n), in the slots in which a Class 1 node can
attempt (i.e., all the slots)
[31-(0) := the attempt probability of a Class 0 node for all
i,1 < i < n(9, in the contention periods during which
Class 0 nodes can attempt (i.e., slots that are not Excess
AIFS slots)
Note that in making these definitions we are modeling the at-
tempt probabilities for Class 1 as being constant over all slots,
i.e., the Excess AIFS slots and the remaining slots. This simpli-
fication is just an extension of the Bianchi’s approximation, and
has been shown to yield results that match well with simulations
(see [13]).

Now the collision probabilities experienced by nodes will
depend on the contention period (excess AIFS or remaining
slots) that the system is in. The approach is to model the evolu-
tion over contention periods as a Markov Chain over the states
(0,1,2,...,1), where the state 5,0 < s < (I — 1), denotes that
an amount of time equal to s slots has elapsed since the end
of the AIFS for Class 1. These states correspond to the excess
AIFS period in which only Class 1 nodes can attempt. In the
remaining slots, when the state is s = [, all nodes can attempt.
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Fig. 4. AIFS differentiation mechanism: Markov model for remaining number
of AIFS slots.

In order to obtain the transition probabilities for this Markov
chain we need the probability that a slot is idle. Using the de-
coupling assumption, the idle probability in any slot during the
excess AIFS period is obtained as

e

apa =] (1-8"). ©)

i=1

Similarly, the idle probability in any of the remaining slots is
obtained as

) n(®)
an =1 (1-67) I1 (1-4). ™
1=1 =1

The transition structure of the Markov chain is shown in
Fig. 4. As compared to [13], we have used a simplification that
the maximum contention window is much larger than [. If this
were not the case then some nodes would certainly attempt
before reaching [. In practice, [ is small (e.g., 1 slot or 5 slots;
see [3]) compared to the maximum contention window.

Let m(EA) be the stationary probability of the system being
in the excess AIFS period; i.e., this is the probability that the
above Markov chain is in states 0, or 1, or ..., or (I — 1). In
addition, let 7( R) be the steady state probability of the system
being in the remaining slots, i.e., state [ of the Markov chain.
Solving the balance equations for the steady state probabilities,
we obtain

L+ qpa+ g5+ + dis

m(EA) = 5 R
1+qEA+qEA+"'+qEA + T—qn
’1519.4
m(R) = 1-4r .8

[
dpa
1—qr

L+ qea+aha+-+ s +

The average collision probability of a node is then obtained by
averaging the collision probability experienced by a node over
the different contention periods. The average collision proba-
bility for Class 1 nodes is given by, for all i,1 < i < n()

e

W =mEa) (1= [ (1-8") ]+
=L

(D n(®
(1 _ /3}”) II (1 _ ﬁj(.o)) )
j=1

X |1-—

I1

J=Lj#i
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Similarly, the average collision probability of a Class 0 node is
given by, for all i,1 < i < n(®

o ({6 T 6) oo
j=1 J=Llj#i

Our analysis in the remaining section now generalizes the
analysis of [13] and also establishes uniqueness of the fixed
point and the property that the fixed point is balanced over nodes
in the same class. Define GV (-) and G(©)() as in (1) (except
that the superscripts here denote the class dependent backoff pa-
rameters, with nodes within a class having the same parameters).
Then the average collision probability obtained from the above
equations can be used to obtain the attempt rates by using the
relations

Y =60 (47, and g = ¢ (1)

forall 1 < i < nM, 1 < j < n®, We obtain fixed point
equations for the collision probabilities by substituting the at-
tempt probabilities from (11) into (9) and (10) (and also into (6)
and (7)). We have a continuous mapping from [0, 1]™ D o
[0, 1]”(1)"'”(0). It follows from Brouwer’s fixed point theorem
that there exists a fixed point.

Y

B. Uniqueness of the Fixed Point

Lemma 6.1: It FO) is one-to-one, then collision probabilities
of all the nodes of the same class are identical; i.e., the fixed
points are balanced within each class.

Proof: See Appendix. |

Theorem 6.1: The set of (9)—(11) (together with (8), (6) and
(7)), representing the fixed point equations for the AIFS model,
has a unique solution if the corresponding functions G(*) and
G are monotone decreasing and F(!) and F(© are one-to-
one.

Proof: See Appendix. ]

Remark: Tt follows from the earlier results in this paper (see,
for example, Theorem 5.2) that if G(9)(.) and GG (1) (.) are of the
form in (5), and if K > 1, p® > 2, and b} > 2p(®) + 1, for
1 = 0, 1, then the fixed point will be unique.

C. Numerical Results (Fixed Point Analysis, CMP and ns-2
Simulation)

Although the numerical accuracy of the fixed point analysis
has been reported before (see [4] and [13]), for completeness,
in Figs. 5 and 6, we compare the collision probability obtained
using the fixed point analysis with ns-2 simulation and the CMP
simulator. Fig. 5 plots the collision probabilities of AC_VO (ac-
cess category for voice; the high priority, as in [3]) nodes and
AC_BE (access category for best-effort traffic, e.g., TCP; the
low priority) nodes, with the number of AC_BE nodes fixed to
4. Fig. 6 plots the collision probabilities of AC_VI (access cat-
egory for video; the high priority) nodes and AC_BE (the low
priority) nodes with the number of AC_BE nodes fixed to 12.
AC_VO, AC_VI and AC_BE correspond to the IEEE 802.11e
EDCA access categories. As observed in the plots, the AIFS
model works very well whenever | < CWy,;, of the traffic
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Fig. 5. Plots of collision probability of AC_VO (HP) nodes and AC_BE (LP)
nodes with the number of AC_BE nodes fixed to 4. The lines correspond to the
fixed point analysis, the “4-” correspond to the ns-simulations and “o0” corre-
spond to the CMP simulator. The 95% confidence interval lies within 1% of the

simulation estimate.
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Fig. 6. Plots of collision probability of AC_VI (HP) nodes and AC_BE (LP)
nodes with the number of AC_BE nodes fixed to 12. The lines correspond to
the fixed point analysis, the “+” correspond to the ns-simulations and “o0” cor-
respond to the CMP simulator. The 95% confidence interval lies within 1% of
the simulation estimate.

classes (see Technical report [20] for additional plots comparing
the fixed point analysis with the simulations).

Remarks 6.1 (AIFS Differentiation and Multistability): It has
been observed that (see [1]) as the number of nodes in the system
increases, AIFS provides non-preemptive service to high pri-
ority nodes, starving the low priority nodes. This may lead to
long periods of time when high priority nodes get serviced while
the low priority nodes wait. We capture this behavior using the
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Markov model in Fig. 4. This cannot be viewed as multistability
(as seen in Section IV), because AIFS always gives preferential
access to the high priority nodes, while starving the low pri-
ority nodes, and never the other way. Further, in our analysis
on AIFS, the attempt probability 3(*) of a class 4 corresponds
to only those slots in which class 7 can attempt (rather than all
slots). The variation in attempt rate and collision probability, due
to AIFS, is captured using the Markov model shown in Fig. 4.

VII. MULTIPLE ACCESS CATEGORIES PER NODE

In this section we further generalize our fixed point analysis to
include the possibility of multiple access categories (or queues)
per node. We consider n nodes and c; access categories (ACs)
per node ¢; the ACs can be of either AIFS class (for simg)licity,
we consider only two AIFS classes) and ¢; = cgl) + cio) (the
superscripts refering to the AIFS classes as before). The ACs in
a node need not have the same G(-). Since there are multiple
ACs per node, each with its own backoff process, it is possible
that two or more ACs in a node complete their backoffs at the
same slot. This is then called Virtual Collision, and is resolved
in favour of the queue with the highest Collision Priority in the
node. We label the ACs from 1 to ¢;, with AC 1 corresponding
to the highest collision priority in the node and AC ¢; corre-
sponding to the least collision priority. Unlike the single access
category per node case where a collision is caused whenever any
two nodes (equivalently, ACs) attempt in a slot, here, a AC sees
a collision in a slot only when a AC of some other node or a
higher priority AC of the same node attempts in that slot. A low
priority AC of a node cannot cause collision to a higher priority
AC in the same node. In Section VII-A we will study multiple
access categories per node without AIFS (i.e., all the ACs wait
only for DIFS) and consider AIFS later in Section VII-B.

We assume that, in a node (say ¢), the AIFS of Class 0 ACs
(with c§°> ACs) exceeds the AIFS of the higher priority Class 1
ACs (with cgl) ACs) by [ slots. Also we assume that the Class
1 ACs have a higher collision priority compared to Class 0 ACs
in a node. This assumption conforms with the way access cat-
egories are defined in the IEEE 802.11e standard. Also, when
collision priorities are interchanged with AIFS priorities, the ac-
tual performance of the system would be hard to characterize.

A. Without Aifs

Let v, ; be the collision probability of AC j of node ¢ and
B;,; be the attempt probability of AC j of node ¢, when the AC
can attempt. The fixed point equations for this system are, for
allz=1,...,n(and 3 = 1,...,¢)

Bii = Gii(Vi;) (12)
j—1 n cr
vij=1=J]0-8m) [I TIQO-8e) (3

m=1 {k=1,k#i} I=1

where G; ;(-) depend on the backoff parameters of AC j of node
i. The term Hin_:ll (1— B;.m) in the above equation corresponds
to the higher priority ACs in the same node. Observe that the
G, j(+) definition allows the possibility of different backoff pa-
rameters (bg, p, K') within a node.
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Fig. 7. Collision probability of high priority AC (HP) and low priority AC (LP)
in a system of nodes with two ACs. Both simulation (sim) and analysis (ana) are
plotted. The backoff parameters of both the ACs (in all the nodes) are identical
with by = 16 and AIFS = DIFS. Also plotted is the collision probability
(obtained from simulation) for single AC per node case with same backoff pa-
rameters and twice the number of nodes. In all the cases p = 2 and K = 7. For
the simulation results, the 95% confidence interval lies within 1% of the mean
value.

Theorem 7.1: The fixed point equations in 4, obtained by
substituting (12) in (13) has a unique solution when G ; is
monotone decreasing and F; ;(vy) := (1 — v)(1 — G, ;(7)) is
one-to-one forallz =1,...,nandj =1,...,¢;.

Proof: See Technical Report [20].

B. With AIFS

In this section, we analyse the system where nodes have ACs
of either AIFS class (the case where there are only Class 1 ACs
can be modeled using the approach in Section VII-A). Define
for1 <i<n,1<j<g,C;;€{0,1} tobethe AIFS class
of AC j in node ¢. Writing the fixed point equations for ¢, j s.t.
C;,; = 1, we obtain

1

J

m(EA) (1= Bim)

1T (1= Br)

{k=1,k#i} {1<I<cr:Cr =1}

bR [[0=6) [ TI0-5)

Yig=1—

—

1

X

=T

m=1 k=1,k#il=1
(14)
and for ¢, 5 s.t. C; ; = 0, we obtain,
j—l n Ck
vij=1-J]0=8m) I TIO-8) 95
m=1 {k=1,k#i} =1
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Fig. 8. Collision probability of high priority AC (HP) and low priority AC (LP)
in a system of nodes with two ACs. Both simulation (sim) and analysis (ana) are
plotted. For the high priority AC, by = 16 and AIF'S = DIF'S, while for the
low priority AC we have by = 32 and AIF'S = DIFS + 1 slot. Also plotted
is the collision probability (from simulation) of two classes of nodes when the
two ACs of a node are considered as independent ACs in separate nodes. In all
the cases p = 2 and ' = 7. For the simulation results, the 95% confidence
interval lies within 1% of the mean value.

and 3; ; = Gi j(vij). 7(EA) and 7(R) are defined as before
[see (8)], with gr 4 and ggr defined as

n
wa=11 ]I
k=1 {1§l§ck.:Ck_1:1}

n Ck

ar = [ T1C1 = Bro).

k=11=1

(1= PBrya)

(16)

Theorem 7.2: The fixed point (14) and (15) have a unique
solution when G; ; are monotone decreasing and Fj ;(-) are

one-to-one for all ¢+ = 1,...,n and for each ¢, for all j =
1, N
Proof: See Appendix. |

Figs. 7 and 8 plot performance results for the multiple ACs
per node case. In Fig. 7, we consider a set of homogeneous
nodes each with two access categories. The backoff parame-
ters for either AC are the same (bg = 16, p = 2, K = 7 and
ATFS = DIFS). The figure plots the collision probability of the
higher priority (HP) AC and the low priority (LP) AC obtained
from CMP simulator as well as from analysis. Also plotted in
comparison is the collision probability (from simulation) for the
single AC per node case with twice the number of nodes. Notice
that, except for small n, the performance of the high priority AC
and the low priority AC are almost identical (the backoff param-
eters are identical), and close to the performance of the single
AC per node case (see Remark 7.1 below).

In Fig. 8, we again consider a set of nodes each with two
access categories. The higher priority AC has by = 16 and
ATFS = DIFS, while the low priority AC has by = 32 and
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ATFS = DIFS+1slot. p = 2 and K = 7 for either case. Fig. 8
plots the collision probability of the high priority AC and the
low priority AC from simulation as well as the analysis. Also
plotted is the collision probability for the two classes of nodes
(from simulation) obtained by modeling the two ACs in a node
as independent ACs in separate nodes. Notice again that except
for small n, the performance of the multiple queue per node case
is close to the performance of the single queue case.

Remarks 7.1: The above observations from Figs. 7 and 8
can be understood as follows. From the fixed point equations
in Section VII, we see that for the high priority AC in any node,
only one term corresponding to the low priority AC of the same
node is missing (for the systems in Figs. 7 and 8 with two ACs),
in comparison to the case in which all the ACs are in 2n sep-
arate nodes. Hence, as n increases, the effect this single AC
in the same node diminishes, and the performance of the mul-
tiple queue per node case coincides with the performance of the
single queue per node case each with one of the original ACs. &

VIII. CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS

In this paper we have studied a multidimensional fixed point
equation arising from a model of the backoff process of the
EDCA access mechanism in IEEE 802.11e Wireless LANs. Our
first concern was the consequences of the nonuniqueness of the
fixed point solution and conditions for uniqueness. We demon-
strated via examples of homogeneous systems that even when
the balanced fixed point is unique, the existence of unbalanced
fixed points coexists with the observation of severe short term
unfairness in simulations. Further, in such examples the bal-
anced fixed point solution does not capture the long run average
behavior of the system. With these observations in mind, we
concluded that it is desirable to have systems in which there is
a unique fixed point, even for a nonhomogeneous system.

We have provided simple sufficient conditions on the node
backoff parameters that guarantee that a unique fixed point ex-
ists. We have shown that the default IEEE 802.11 parameters
satisfy these sufficient conditions. The IEEE 802.11e standard
motivated us to consider the nonhomogeneous case, and in this
case our results suggest certain safe ranges of parameters that
guarantee the uniqueness of the fixed point while providing ser-
vice differentiation.

Further, using the fixed point analysis, in [20], we were also
able to obtain insights into how the different backoff parame-
ters provide throughput differentiation between the nodes in a
nonhomogeneous system. We observed that using initial backoff
window, in general, a fixed throughput ratio can be achieved. On
the other hand, using p and AIFS the service can be significantly
biased towards the high priority class, with the differentiation
increasing in favour of the high priority class as the load in the
system increases. We also observed that the effect of collision
priority, where there are multiple access categories per node, de-
creases as the number of nodes increases.

The fixed point approach is simply a heuristic that is found
to work well in some cases. Our work in this paper suggests
where it might not work and where it might work. In a recent
work [15], the authors have proved that for random backoft al-
gorithms, when the number of sources grow large, the system
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is indeed decoupled, providing a theoretical justification of de-
coupling arguments used in the analysis.

APPENDIX

Proof of Lemma 6.1: Rewriting (9), forall 4,1 < i < n(}),
we get

e

o-)- 1L (-8

j=Li#i

X

w(EA) + 7(R) ﬁ (1 - ,§°>)] .

k=1

Multiplying by (1 — ﬁfl)) and using the fact that [31-(1) =
G (751)), we have

(1 - 75”) (1 -aW (%(1))) = m(EA)qpa + m(R)qg.
a7
In (17), we see that the right hand side is independent of 3.
Hence, if the left hand side function, () (v) := (1 — )(1 —
G (7)), is one to one, then fyi(l) = ’yf-l) foralll < i,j,< n.
Similarly, we can see from (10) that, for all 7,1 <7 < n(0)

(1-40) (1- 69 (7)) = an.

Hence again, ,yi(O) = ,yj(O) forall 1 < 4,4, < n® if F( isone
to one.

Proof of Theorem 6.1: From Lemma 6.1, we already know
that the fixed point is balanced within a class. Now, assume that
there exist two vector fixed point solutions, 4 and A, with the first
n1) elements of  being v() and the remaining 7(°) elements
being 7(©). Similarly, the first n(!) elements of A are A(!) and
the next n(?) elements are A(%),

Let us, in this proof, denote the value of qr (see (7)) for the
fixed point 4y as ¢r(4y) and for the fixed point A as gg(A); simi-
larly, we do for gz 4 and for other variables.

Lemma B.1: Let v and X be two fixed point solutions and
let F(©) be one-to-one. If 71 < A1), then v(*) > A(®)_ Also,
A1) = XD 40 = \(0),

Proof: Without loss of generality, let v(") < A(). Then
GO (yW) > @M (AD) (see Lemma 5.1). Hence

(18)

n() L
(1-606EM)" <@ -a®pm).

If we assume 79 < A then gr(7(?) > gr(A\(?) [see (18)].
Hence, we require

(1-— G(l)(fy(l)))"(l)(l el (7(0)))71(0)
> (1- G(l)()\(l)))n(l)(l — G(O)()\(O)))n(o)_

Or
(1— G(O)(W(O)))n(O) > (1- G(0)<)\(0)))n(0)

which implies ,y(o) > A(® which is a contradiction.
If 4@ = X0 then gr(v?) = ¢r(A\?). Hence,
(1 — GOHONY = (1 = GOALNY O, 4D = AW,
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Hence, if vV < A1), then 4@ > XO Let 4O 2« X\O),

then ga (1) # ga(A®). Hence, (1 — GO 2

(1 — GO o, 4D £ \®), n
Now, using (8), write the right-hand side of (17) as

gea (14 qpa+---+doi) +ar qE‘
J(QEA;QRJ) = o
L4 qpa+ghy+ - +dpa + T2
(19)

Lemma B.2: Tt v < XM then J(qpa(¥), qr(Y),1) <
J(qEA(A)v QR(’\)7 l)
Proof: Consider J(qga, qr,!) [see (19)].

1
qea (14 gpa + +(IjE‘_A1) + qriEA

J(QEA;QRJ) = -1 4 R 4 .
- E ¢
1+QEA++(]EA + I—qr
Expanding and rewriting the above equation, we get
-1
_ qea+qealqea —qr) + -+ qpa(qEa — qR)

gea + qea(qea —qr) + -+ (1 — ¢r)

which is of the form L1 f1+ 73+ When v < A1) then 4(©) > \(©

(from the previous lemma). Hence

qea(Y) — qr(7)
n® n(®
(1-GOEM) (1= ] -6
’L_> Z:o>
H (1—GOADY) |1 - H(l — GONOY)

i=1

= (IEA()\) = qr(A)-

Also, we can see that

qea(Y) <qra(A)
qr(Y) <qr(A).

Using the above three inequalities, we can see that

J(qea(v), qr(7),1) < J(gea(A), qr(A),1).

|

If vV < AW then (1 — yM)(1 = GD (M) > (1 —

AM) (1 =@M (AM)). However, from the above lemma and the
right hand side of (17), we see that we have a contradiction.

Proof of Theorem 7.2: Consider c¢; access categories per

node i with ¢{”) ACs (1, . .,c,(.”) with ATFS™, and the re-

M 11, ¢;) with AIFS = AIFS™) 47
slots. The fixed point equations for the system are given in (14)
and (15).

As before, by Brouwer’s fixed point theorem, there exists a
fixed point for the system of equations. Assume that there exist
two fixed point solutions for the above system of equations, 7

and A with y; ; and A; ; as elements.

maining cgo) ACs (c
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Let us, in this proof, denote the value of qr (see (16)) for
the fixed point 4 as qr(y) and for the fixed point A as gr(A);
similarly, we do for qg 4 and for other variables.

In a node 7, consider two ACs of the same AIFS class, i.e., j
and j — 1s.t. C; j = C; ;1. From (14) or (15), we see that

(1=7;) =1 =7,-1)1 = Gi j—1(7i,j-1))

or

(1 =7ij) =Fij—1(vij-1)-
Hence, using the one-to-one property of F; ;(-) if v; j < A j,
then Yik < )\ivk for all k such that Ci,j = Ci,ks

Now consider all those nodes with C; ., = 0, i.e., the least
collision priority AC in a node is of AIFS class 0. We then have,
using (15) and (16)

(1= ie)(1 =
(1= Aie)(1 =

Gic,(Vie,)) =ar(7y)
Gic,(Mic;)) = ar(A)

e, Fic,(Vie,) = qr(y) and Fi o, (N e;) = qr(A). If gr(y) >
qR(/\), then Yiyer < )\i,ci for all 7 s.t. Oi,ci =0.1If qR('y) =
gr(A), then ; ., = Aj ¢, forall i s.t. C; ., = 0. Combining the
above two results, we see that for all ¢, j s.t. C; ; = 0, either
Yi,j > )\1'7]' or ;5 = /\i,j orv;,; < /\i,j-

Without loss of generality, assume that the collision proba-
bility of Class 0 ACs is more in 4y than in X (7(®) > A0 ~(©
and A(? are the vector of collision probabilities corresponding
to AIFS class 0 in the vectors 4 and A respectively). Hence,
qr(Y) < qr(A). Also, qea(Y) < gpa(A) (the proof is sim-
ilar to that provided for AIFS with s1n€gle AC per node and is
not provided), which implies v < A1

Now consider the expression F'(-) for the least collision pri-
ority Class 1 AC, say j, of any node 7 [see (14)]

(1 =7i;)(1 = Gi j(7i,)) =m(EA,¥)qea(?)

+ (R, ¥)qr ; ()
(1= X)X =Gij(Xij) =m(EA ¥)gea(A)

+ (R, ¥)qr,, ;,(A)

= wa 1(1 - ﬂi,m)H{lngn,kyﬁ,} Hzcl1(1 -
Br,1). Notice that q%’j ) is similar to qr except for terms cor-
responding to the Class O (with lower collision priority) ACs
in node 7. Hence, if 'y(o) > )\(0), then not only is gpa(y) <
qea(A) and qr(7y) < qr(A), butalso, gr, ; () < qr, ;(A). Ex-
panding (1 — -,‘,,]‘)(1 — G,‘,,]‘('i,j)), we get

where gg,,

(1 —-ii)(L=Gij(i5)
(14 qpa+qha+-

-+ qEA) qrpa +

-t qEA + 1
qpa + qpa(qEa —qr) + -+ dpaldr, ) — 4R)
qea +qea(qEA —qR) + -+ (1 = qR)

1 qRqR17)

‘11/\

1+QEA+Q?;A+
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where qg4 — qr = qEA (1 — Hszl an:l,clk:[]}(l — ﬂk’l))
and q%ﬂ) —4r = qg»ﬂ) (1 - H7{I5=1,Cf=0}(1 - ﬁi,l)) . Clearly,

if 7@ > X then gpa(7) — qr(Y) < gea(A) — gr(}) and
qr,,;(v) — ar(v) < qr,,(A) — qr(A). Also, we know that
1 —gr(v) > 1 — gr(A). From the above observations, we see
that, (1 =i ;)(1 = Gi (7)) < (1= Ai)(1 - Gi,j(Ai,{)),
which clearly implies that 7y; ; > A; ;. Hence we have 4% >
A Wwhich is a contradiction.

Also, we can see that 4(1) = AL iff y® = 2@ (the proof
is similar to that in Theorem 6.1 and is not provided here).
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