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Abstract— We consider a dense ad hoc wireless network laws of dense wireless networks (with a realistic path loss
comprising n nodes confined to a given two dimensiqnal region mode|) depend not on|y on the number of nodﬂ)s but also
of fixed area. For the Gupta-Kumar ([1]) random traffic model on the network power ConstrainPI. Our main result is that

and a realistic interference and path loss model (i.e., the channel th d-t d th hout of d twork | |
power gains are bounded above by 1, and are bounded below € end-to-en roughput or dense networks scales only as

by a strictly positive number), we study the scaling of the O(log(P)) (or asO(log(n)), when P = np for a fixedp), due
aggregate end-to-end throughput with respect to the network to interference from simultaneous transmitters and bounded
average power constraint, P, and the number of nodes,n. distance between any transmitter-receiver pair. This contrasts

The network power constraint P is related to the per node . 1 : .
power constraintp, as P — np. For large P, we show that the with the © (n2> scaling achievable for an extended network,

throughput saturates asO (log(P)), irrespective of the number of Where the size of the network scales ragsee for e.g., [1]
nodes in the network. For moderate/, which can accommodate and [3]). Viewed differently, the logarithmic scaling of the
spatial reuse to improve end-to-end throughput, we observe that aggregate end-to-end throughput follows from the fact that

the amount of spatial reuse feasible in the network is limited "= .\ 2 hievable bit-rate in the network scales only
by the diameter of the network. In fact, we observe that the

end-to-end path loss in the network and the amount of spatial @S©(log(F)) or ©(log(n)), and not ag(n) (as in extended
reuse feasible in the network are inversely proportional. This networks).

puts a restriction on the gains achievable using the cooperative ) . ) . o
communication techniques studied in [2] and [3], as these rely | he logarithmic scaling, for tending to infinity, or, for very

on direct long distance communication over the network. large P, is achieved using direct communication between the
source-destination pairs, without any spatial reuse. However,
|. INTRODUCTION better scaling results are achievable for small and moderate

We consider a wireless network comprisingnodes con- £, by using spatial reuse, multihopping or other communi-
fined to a given two dimensional region of fixed arda cation techniques. For the path loss model £f for any
Such networks are called dense or fixed SNR networkansmitter-receiver pair separated by a distahdé] showed
because, the attenuation between any transmitter-receiver g2t spatial reuse and multihopping achieves an end-to-end
is lower bounded by a positive gquantity independentnof throughput of© nz ). A recent result, [2], achieve® ni
Source-destination (s-d) pairs are chosen randomly (as in theoughput using cooperative communication techniques, for
Gupta-Kumar random traffic model, see [1]) and the s-d paiasrich scattering environment. Using a similar cooperative
communicate by sharing the common wireless channel. For@mmunication technique (as in [2]) and by implementing a
average power constraiptat a node, the total network averagéierarchy, [3] obtained ®(n) throughput for dense wireless
power constraint,P, is given by P = np. For a realistic networks. The above results (as reported in [1], [2] and [3]) are
interference and path loss model, we study the scaling of thet feasible for a realistic path loss scenario, and the scaling
aggregate end-to-end throughput between the s-d pairs vfiils when the nodes become sufficiently close. While it is
respect to the network power constraiitand the number of true that the scaling does not hold fartending to infinity,
nodesn. we are interested in understanding the feasibility of the scaling

Using a far-field path loss model g%, for every transmitter- laws for sufficiently largen (when the path loss model
receiver separation of, Gupta and Kumar ([1]) showed thatholds). For such a scenario (when the path loss model holds
the end-to-end throughput of dense wireless networks scalesthe given areal and a node density), we observe that the
as ® nég_ It was observed in [4] that® ni scaling is amount of spatial reuse feasible in the network is limited by
not feasible in realistic scenarios, as the far-field path o8 diameter of the network. In fact, we show that the spatial
model (used in [1]) provides a channel power gain greater thEg!S€ achievable in the network is inversely proportional to
unity for very smalld. In our work, we note that the scalingthe end-to-end path loss in the network. This puts a restriction

on the gains achievable using cooperative communication
1-4244-1200-5/07/$25.0€)2007 |IEEE techniques discussed in [2] and [3], as they rely on direct



communication over long distances in the network. We obserug; < 1 implies that a receiver cannot receive power more
that, while spatial reuse and multihopping (as reported in [1ffan the power transmitted.

can provide throughput enhancements for sufficiently large L

even in realistic scenarios, cooperative communication gais OPjective

(as reported in [2] and [3]) may not be achievable. Our objective is to study the scaling of the aggregate end-
Outline of the Paper : In Section Il, we define the denseto-end throughput of the described wireless network for the
wireless network model, the realistic interference and path logterference and path loss model discussed above. We study
model and the objective function. In Section Ill, we show thdhe scaling laws for different network power constraint regimes
the aggregate throughput of a dense network scales only-agrge P (in terms of P) and moderateP (in terms of
O(log(P)) or ©(log(n)). We discuss the feasibility of spatialn). We consider spatial reuse, multihopping and cooperative
reuse and cooperative communication for practical wirelesemmunication as the strategies used in the network.
networks in Section IV. We finally conclude the paper in

Section V. IIl. SCALING LAWS FORLARGE P

In this section, we will obtain scaling laws of dense wire-
Il. NETWORK MODEL less networks with respect t&. Suppose that the source-
We consider a wireless network comprisingnodes, dis- destination pairs are chosen arbitrarily (instead of randomly,
tributed uniformly over a two dimensional region of fixed areas stated earlier), such that the s-d pairs are chosen as close
A. as possible. Then, the aggregate end-to-end throughput achiev-
« % source-destination pairs are formed in the networRpble in this scenario is the same as the maximum spatial reuse
with each node belonging to a distinct s-d pair. The sf¢asible. Clearly, the throughput achieved in this scenario,
pairs are chosen randomly such that the mean s-d pdiper bounds the throughput achieved for the random traffic
distance isO(1), with respect to the diameter of themodel (notice that the first phase in every communication
network. strategy studied in [1], [2] and [3] is spatial reuse). Now, we
« The s-d pairs communicate by sharing the common wirgssume that the nodes use single user decoding receivers, treat-
less channel. The gain between any transmitter-receiv@g every simultaneous transmission (other than the intended
pair is assumed fixed, and determined by the path logge) as interference. We will now upper bound the bit rate
that has a power law depending on the path length. achievable in this scenario.
« We cons_lder a total network average power constraint A. An upper bound on the Network Throughput
accounting only for the transmit power of all the nodes in
the network. Further, the nodes have an individual averageConsider a slot, when nodei, 1 < i < n, transmits with
power constrainp, that is related taP as P = np. In powerP;(t), and the transmit powers are such that they satisfy
our work, we assume thatis fixed for a given scenario, @ network power constrain_"" ; P;(t) < P(t). For ease of
and hence, the network power constraihtscales as:. notation, we will omit the index now, and include it again
We do not model a maximum power constraint per nodater (at the end of this section). The SINR achievable (in slot

in the model. t) at the receiver of a transmittéris bounded above by
« We assume that the system is slotted and nodes com- a; P,
municate over slots of fixed duration. When the nodes SINR < N+ (s i P

use single user decoding transceivers, we assume that _ .
the bit rate achieved between a transmitter and receiv@hereq; anda; are the constant gains at the receiver from the
is given by Shannon’s formula = log,(1 + SINR) transmitters and;j and N is the noise power. Then, it follows
bits per symbol. Further, when the nodes communicafi®m the interference model, that the SINR is bounded above
cooperatively, we assume that nodes are synchronist
X o P
without any additional overheads. SINR <
N+aad iz b

A. Interference and Path loss Model " d total ‘ 5 -
We consider a realistic physical model of interference (SIN oran a ocate t°t"?‘ petwor POWEr o1, an optlma power
allocation (that maximizes throughput) must satisfy P; =

ba;ed) in the network. In [1], it was assqmed that the powgy Hence, using the equality™, P, — P in the above
gain between a transmitter and a receiver scaled with the . ¢
. 1 ; expression, we have,
distanced as 5;, wheren > 2 is the path loss exponent.

1
While this holds true for far-field distances, the above model SINR < Pif
is not appropriate when the receiver is very close to the T N+as(P-F)
trapsmnter. In our work, we use a Qe_”e,ra“zed mode| Now, the maximum throughput achievable in the network is
which the channel power gain betweenjj is «; ;, where bounded above by
0 < ag < oy < 1. ay is the minimum channel power
gain between any transmitter-receiver pair, and is related to Clan) = Zlog

P;
. : I+ =
the diameter of the networki,4, asa 4 = di, The assumption - ( N+ as(P — Pi))
A (3



where7 indexes the set of transmitters with positive power.
We denote the above expression @%c«4), denoting the
dependence on the parametey. We will now obtain an upper
bound forC(«4) by optimising the above expression fby,
i.e., we will maximizeC'(«4) subject to the power constraint
>, P <P

2)

B. Optimization Problem

power constraints{ P(t),t
limy oo 375, P(i) < P.
We have shown that the aggregate bit rate of an arbitrary
network scales a®(log(P)) (this is also the maximum

bit rate achievable in the network). Hence, the aggregate
end-to-end throughput of a random network (as defined
in Section 1I) can scale only a@(log(P)).

2,---} which satisfy

3) Also, observe that the above results depend only: gn
Define f(P) := log (1 + #@%)' Then the opti- and P, but are independent of the number of the nodes
mization problem can be written as in the network (and hence, on the spacing between the
nodes).
maxz f(Fi) @) 4) We call P greater than the threshold (according to Theo-

rem 3.1) for which the logarithmic scaling holds, as large
power regime. And networks with total power constraint
P lesser than this threshold are called moderate power
networks.
5) For an extended network, where the network size scales
with n, the path loss from the farthest node decreases to
0. Forn > 2, [1] showed that the cumulative interference
from simultaneous transmitters can then be bounded,
thus achievin@®(n) aggregate bit rate with spatlal reuse.
Using multihopping strategy, [1] achieved(n2 ) end-
to-end throughput for extended networks.
Consider a simple TDM scheme, where each node
transmits with powe = np, to its intended destination
in its slot. Since a node gets access to the channel once
in everyn slots, the average power per nodeﬁs: .
And the achieved bit rate in the proposed scheme scales

subject to the power constraint
Sper
%

Lemma 3.1: f(P) is monotone increasing wit® for 0 <
P < P. [
Lemma 3.2:Suppose tha2a 4 — 1 > 0. Then, f is convex
in P for 0 < P < P. Further, the solution for the optimization
problem in (1) is to allot all the power to a single transmitter.
And the optimal value for the objective function in (1)fi§P).
Proof: See Appendix A for the proof. ]
Lemma 3.3:Suppose thata 4 — 1 < 0. For largeP, there
exists aP’, 0 < P’ < P, such thatf(P) is concave uptd®
and convex thereafter.
Proof: See Appendix A for the proof. ]

_ 5\ L
/f(P) h }Og (1 + W)’ mcrease_s-to infinity with?, and aslog(n). This proves the achievability o®(log(n))
f(0) = y4p decreases t0 as P’ increases. Now, observe for dense wireless networks.
that, for largeP, we havef’(0) < f(lf) The following lemma  The following theorem summarizes the above arguments.
upper boundsf(P) for all 0 < P < P. _ Theorem 3.2:The aggregate end-to-end throughput of a
Theorem 3.1:Suppose thakas — 1 < 0. For large P,  dense wireless network scales @glog(P)), where P is the
f(Py< L2 pforallo< P <P network average power constraint. In terms of the number
Proof: See Appendix A for the proof. B of nodes,n, the maximum achievable throughput of a dense

Define g(P) := f(P )P Let {P;} be an optimal solution network scales a®(log(n)). m
for the optimization problem (1). From Theorem 3.1 and the

definition of g(-), we have, IV. SPATIAL REUSE AND COOPERATIVE COMMUNICATION
2 IPy <D ol

wheneverP is large enough Observe that,

Sathy =S IR =T S R

6)

For dense wireless networks, [1], [2] and [3] achieved
C) nzg, () (n% and ©(n) end-to-end throughput respec-
tively, by using a far field path loss model (with a path loss of
din for any transmitter-receiver separation®f As observed in
[4], this model requires power amplification by the channel for
sufficiently small values off, and hence, is not practical. The
T scaling fails when the nodes become sufficiently close, i.e.,
This implies that for large®, f(P) > Y, f(P:), for any power whenn tends to infinity. In this section, we are interested in
allocation, orf (P) is the optimal solution. Thusog (1 + % )  understanding the feasibility of the communication strategies
is an upper bound on the network throughput. This implies thaiscussed in [1] (spatial reuse and multihopping), [2] (spatial
the maximum achievable bit rate for a dense network witeuse, multihopping and cooperative communication) and [3]
arbitrary s-d pairs i€ (log(P)). (spatial reuse, multihopping, cooperative communication and
Remark: hierarchy) for sufficiently large:, when the path loss model

1) We have only shown that for a per slot netof — still holds.

work power constraintP(t), the aggregate bit rate For example, consider a 1Km 1Km planar area, with
scales adog(P(t)). It is now straightforward to ex- a million nodes arranged in a square grid with a minimum
tend the above results to a sequence of netwoskacing ofl metre between them. For a carrier frequency of

=f(P)



3 GHz, the carrier wavelength is aroufdlm much smaller e.g., in [2], M = n%), an upper bound on the maximum bit
than the node separation @M. The path loss model holdsrate achievable in the cooperative communication phase is,
for this deployment, and hence, we could expect that such

results as spatial reuse (6f(n)), multihopping (of© <n%)) nlog (1 + WTA) < nlog (1 + @(£)N>

. . . 2
and cqoperatwe commumgatmn (6f mg OF,G(H)) hOId, where we have modeled the cooperative communication phase
approan_ately (fOT €.g., W!th some pro ab|I|ty_). Qbservm%S comprising ofn parallel independent channels, with only
that s_pat!al reuse 1s essenn_al to_ every communlt_:atlon stratgg path loss between a transmitter-receiver pair in the cluster.
(stuQ|gq in 1], [] anq [3]). in th's context, we will StUd.y th‘E’Observe that the throughput, as given by the above expression
feasibility of ©(n) spatial reuse in the network, and the impag§ s ot scale a®(n). In fact, it is bounded above by a

It r_}_is ‘;””“S'.”g cgoptleratl\/le cI:otm mun|.cat|otr)1 tlechn;]que;.] ‘ .constant. The key observation is that the path loss that permits
€ following simple calculations given below snow tha Ir:%patial reuse in the channel is so restrictive that it is unable

order to supportaspatiall reuse®in), the network size must to support long distance MIMO communications. It is easy
be at least as large &5 nT’)- Let us fix the SINR requirement 1o verify from the above formulation that, for any power
for point-to-point communication tg3, independent of the allocation with a total network power ofp, the achievable
number of nodes and the dimensions of the network. Suppesgughput using cooperative communication (as reported in
that all the transmissions involve the constant transmit pow] and [3]) is bounded by a constant, independent. of

p. Let S(n, A) denote the spatial reuse achievable in the Returning to the example of a million nodes arranged in
network withn nodes while supporting a SINR @f. Then, a grid in a 1Kmx 1Km planar area, we see that, while
this implies that the maximum interference gain observed gsatial reuse and multihopping may increase the performance
any receiver needs to be bounded above, as seen below. of the system (as compared to direct transmissions involving

D the s-d pairs), cooperative communication does not. In other
f < SINR< <N—|—p(5(n A~ 1)a ) words, while spatial reuse and multihopping can coexist,

o ’ 4 even in a practical scenario, for sufficiently large spatial
This implies that reuse and cooperative communication (as reported in [2] and
(S(n, A) — Dag < v [3]) cannot. The direct communication between the source-

) ) destination clusters should be avoided in order to enhance
for some constanty, independent of: or p. Absorbing the the throughput in realistic scenarios. However, by restricting

constants and simplifying the expression, we have, the communication distance between the clusters, we lose
S(n, A)as <1 throughput due to multihopping costs.
Hence, to achieve a spatial reuse@fr), we require, V. CONCLUSIONS
O(n)as <1 ) The important feature of a dense network, as compared
to an extended network is the positive interference due to a
In terms ofd,, we have, simultaneous transmission any where in the network. We have
O(n)— < 1 observed that this implies that the scaling results are a function
dly — of both the number of nodes and the network power. More
or, specifically, for large power networks, we observe that the
O(n) < d achievable throughput scales only @log(P)), irrespective

of the number of nodes in the network. However, for moderate
The above expression implies that the total spatial reuge \hen spatial reuse may be efficient, we showed that
feasible in the network is bounded by the dimensions of th@atial reuse puts a restriction on the network size, which
network. In other words, to support a spatial reus®6f), the  affects the gains achieveable using cooperative communication
dimensions of the network should at least scale(—)e(m%), techniques.

or the aread should be as large & ni ).

Viewed differently, the end-to-end path loss between any

source-destination pair (according to the random traffic model) This research was supported by the Indo-French Centre for
will scale at least a®© (%) (from Equation (2)), when the the Promotion of Advanced Research (IFCPAR), under project
spatial reuse scales &5n). The cooperative communication 00-IT.

models described in [2] and [3], require the source cluster (the
biggest cluster containing the source node) and the destination
cluster (the biggest cluster containing the destination nod¢)] P. Gupta and P.R. Kumar, The Capacity of Wireless Networks, IEEE
to communicate directly, using cooperative communication — Transactions on Information Theory, 2000.

involving the nodes in the cluster. For a spatial reus®6f), [2] Shuchin Aeron and Venkatesh Saligrama, Wireless ad-hoc networks:

! Strategies and Scaling laws for the fixed SNR regime, To appear in
and the number of nodes in the clustef (M < ©(n), for IEEE Transactions on Information Theory.
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APPENDIX large enoughP, f”(P) > 0, i.e., for large P, there would
. exist a P’ < P such thatf”(P’) < 0foral 0 < P < P’
A. Proofs for Section |l and f"(P) > 0 for all P" < P < P. The following lemma
Lemma 3.1 :f(P) is monotone increasing i* for 0 < summarizes the idea.

P <P Lemma 3.3 : Suppose thaty — 1 < 0. For largeP, there
Proof: Differentiating f(P) with respect toP’, we have, exists aP’, 0 < P’ < P, such thatf(P) is concave uptd®’
, 1 and convex there after. . =u
f(pP)= o P From the definition of f(-), we see that,f(P) =
) NtaaP-aal 0P log (1+§) increases to infinity withP. Also, f'(0) =
X (N T aiP—aiP + N+ aA]?, — aAP)2> ~reop» decreases t0 as P increases. Further, for large,
1 aaP we see thaif’(0) < @. B
= N+toaP—asP+P < (N—l—aAP—aAP)) Theorem 3.1 : Suppose thatvy — 1 < 0. For large P,

F(p)y < 8p.

= ( 1 ) ( (NJF,O‘AP) ) Proof: From Lemma 3.3, we know thgt(P) is concave
N+asP+P—asP) \N+asP—asP upto P’. Hence, f(P) < f(0) + f/(0)P for 0 < P < P
Clearly, f/(P) > 0 for all 0 < P < P. Hence, f(P) is Since f(0) = 0, we have,f(P) < f'(0)P. For largeP, we
monotone increasing for all < P < P. m havef’'(0) < @ (from the previous arguments). Hence, for
Differentiating f’(P) with respect toP again, we have, 0<P <P/, B
P
" d 1 1 f(P) < 1) p
1) = P
dP \K 4+ (1 —a,)P K —a,P

- In the regionP’ < P < P, f(P) is convex increasing, hence,
We have used the substitutidd := N + a4 P in the above we have,

expression. Also, we are interested only in the sigrf'afP), (f(P) — f(P"))
hence, we have ignoredV + a4 P) in the numerator as well. f(P)—f(P') < W(P —- P
1Py = 1 ( —1(1 — aa) ) Simplifying the above expression, we have,
K —auP (K+(1—O¢A)P)2 . N (P_P/) , (P_P/)
N 1 1% —aa f(P)Sf(PH‘f(P)W—f(P)ﬁ
K—F(l—OJA)P (K—OéAP)z Or,
1
= _ (P-P P-P
(K= aP)(E+ (1 —anP) sy < )/ St (1- S0
—(1—an) n oA or
K+ (1—as)P  K—oauP ’ _(P-P) P-P
_ . f(P) < f(P)5—— + [(P)5
Clearly, K —ayP = N+ P —a,P >0 (for 0 < P < P) P—P P—p
andK + (1 —a4)P > 0. Hence, we will concentrate only onSubstitutingf (P’) < f'(0)P’, we have,
the terms inside the braces =
: _(P-P) ., P—P
P = —(1—aua) aa fP) < f( )ﬁ‘*‘f(o)])pip,
E+l-ad)P = K—asP For largeP, f'(0) < £ Substituti i t
(K —axP)(1—au) +aa(K +(1—ax)P) or largeP, f'(0) < +5*. Substitu InEJ again, we get,
(K+(1_aA)P)(K_aAP) f(P) <f(p)(P7Pl) + f(P)P/P*P
i i iR . - P—p p p—-p
Ignoring the denominator (which is always positive), we hav%
r, _
f"(P) = —[K—-Kas+a4P—ayP _((P-P) P P-P
R [[ Araal —aal sy < ppy (L=2) B8
asK +asP — afy Pl pP—-P PP-P
= (204 — 1)K +2a,4P(1 —ay) Simplifying the above expression, we have,
Clearly, 1 > a4. Now, if 2a4 — 1 > 0, then we see that f(P) < f(P)g

the above expression is positive for all< P < P. Hence, B _
f" >0, or, the functionf(P) is convex increasing. for all P < P < P, which completes the proof. u



