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Abstract— We consider a dense ad hoc wireless network
comprising n nodes confined to a given two dimensional region
of fixed area. For the Gupta-Kumar ([1]) random traffic model
and a realistic interference and path loss model (i.e., the channel
power gains are bounded above by 1, and are bounded below
by a strictly positive number), we study the scaling of the
aggregate end-to-end throughput with respect to the network
average power constraint, P̄ , and the number of nodes, n.
The network power constraint P̄ is related to the per node
power constraint,p, as P̄ = np. For large P̄ , we show that the
throughput saturates asΘ(log(P̄ )), irrespective of the number of
nodes in the network. For moderateP̄ , which can accommodate
spatial reuse to improve end-to-end throughput, we observe that
the amount of spatial reuse feasible in the network is limited
by the diameter of the network. In fact, we observe that the
end-to-end path loss in the network and the amount of spatial
reuse feasible in the network are inversely proportional. This
puts a restriction on the gains achievable using the cooperative
communication techniques studied in [2] and [3], as these rely
on direct long distance communication over the network.

I. I NTRODUCTION

We consider a wireless network comprisingn nodes con-
fined to a given two dimensional region of fixed areaA.
Such networks are called dense or fixed SNR networks,
because, the attenuation between any transmitter-receiver pair
is lower bounded by a positive quantity independent ofn.
Source-destination (s-d) pairs are chosen randomly (as in the
Gupta-Kumar random traffic model, see [1]) and the s-d pairs
communicate by sharing the common wireless channel. For an
average power constraintp at a node, the total network average
power constraint,P̄ , is given by P̄ = np. For a realistic
interference and path loss model, we study the scaling of the
aggregate end-to-end throughput between the s-d pairs with
respect to the network power constraintP̄ , and the number of
nodesn.

Using a far-field path loss model of1dη for every transmitter-
receiver separation ofd, Gupta and Kumar ([1]) showed that
the end-to-end throughput of dense wireless networks scales
as Θ

(
n

1
2

)
. It was observed in [4] that,Θ

(
n

1
2

)
scaling is

not feasible in realistic scenarios, as the far-field path loss
model (used in [1]) provides a channel power gain greater than
unity for very smalld. In our work, we note that the scaling
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laws of dense wireless networks (with a realistic path loss
model) depend not only on the number of nodes (n), but also
on the network power constraint (P̄ ). Our main result is that
the end-to-end throughput of dense networks scales only as
Θ(log(P̄ )) (or asΘ(log(n)), whenP̄ = np for a fixedp), due
to interference from simultaneous transmitters and bounded
distance between any transmitter-receiver pair. This contrasts
with theΘ

(
n

1
2

)
scaling achievable for an extended network,

where the size of the network scales asn (see for e.g., [1]
and [3]). Viewed differently, the logarithmic scaling of the
aggregate end-to-end throughput follows from the fact that
the maximum achievable bit-rate in the network scales only
asΘ(log(P̄ )) or Θ(log(n)), and not asΘ(n) (as in extended
networks).

The logarithmic scaling, forn tending to infinity, or, for very
large P̄ , is achieved using direct communication between the
source-destination pairs, without any spatial reuse. However,
better scaling results are achievable for small and moderate
P̄ , by using spatial reuse, multihopping or other communi-
cation techniques. For the path loss model of1

dη for any
transmitter-receiver pair separated by a distanced, [1] showed
that spatial reuse and multihopping achieves an end-to-end
throughput ofΘ

(
n

1
2

)
. A recent result, [2], achievedΘ

(
n

2
3

)
throughput using cooperative communication techniques, for
a rich scattering environment. Using a similar cooperative
communication technique (as in [2]) and by implementing a
hierarchy, [3] obtained aΘ(n) throughput for dense wireless
networks. The above results (as reported in [1], [2] and [3]) are
not feasible for a realistic path loss scenario, and the scaling
fails when the nodes become sufficiently close. While it is
true that the scaling does not hold forn tending to infinity,
we are interested in understanding the feasibility of the scaling
laws for sufficiently largen (when the path loss model of1dη

holds). For such a scenario (when the path loss model holds
for the given areaA and a node densityn), we observe that the
amount of spatial reuse feasible in the network is limited by
the diameter of the network. In fact, we show that the spatial
reuse achievable in the network is inversely proportional to
the end-to-end path loss in the network. This puts a restriction
on the gains achievable using cooperative communication
techniques discussed in [2] and [3], as they rely on direct



communication over long distances in the network. We observe
that, while spatial reuse and multihopping (as reported in [1])
can provide throughput enhancements for sufficiently largen,
even in realistic scenarios, cooperative communication gains
(as reported in [2] and [3]) may not be achievable.
Outline of the Paper : In Section II, we define the dense
wireless network model, the realistic interference and path loss
model and the objective function. In Section III, we show that
the aggregate throughput of a dense network scales only as
Θ(log(P̄ )) or Θ(log(n)). We discuss the feasibility of spatial
reuse and cooperative communication for practical wireless
networks in Section IV. We finally conclude the paper in
Section V.

II. N ETWORK MODEL

We consider a wireless network comprisingn nodes, dis-
tributed uniformly over a two dimensional region of fixed area
A.

• n
2 source-destination pairs are formed in the network,
with each node belonging to a distinct s-d pair. The s-d
pairs are chosen randomly such that the mean s-d pair
distance isO(1), with respect to the diameter of the
network.

• The s-d pairs communicate by sharing the common wire-
less channel. The gain between any transmitter-receiver
pair is assumed fixed, and determined by the path loss
that has a power law depending on the path length.

• We consider a total network average power constraintP̄ ,
accounting only for the transmit power of all the nodes in
the network. Further, the nodes have an individual average
power constraintp, that is related toP̄ as P̄ = np. In
our work, we assume thatp is fixed for a given scenario,
and hence, the network power constraintP̄ scales asn.
We do not model a maximum power constraint per node
in the model.

• We assume that the system is slotted and nodes com-
municate over slots of fixed duration. When the nodes
use single user decoding transceivers, we assume that
the bit rate achieved between a transmitter and receiver
is given by Shannon’s formula,C = log2(1 + SINR)
bits per symbol. Further, when the nodes communicate
cooperatively, we assume that nodes are synchronised
without any additional overheads.

A. Interference and Path loss Model

We consider a realistic physical model of interference (SINR
based) in the network. In [1], it was assumed that the power
gain between a transmitter and a receiver scaled with the
distanced as 1

dη , where η > 2 is the path loss exponent.
While this holds true for far-field distances, the above model
is not appropriate when the receiver is very close to the
transmitter. In our work, we use a generalized model in
which the channel power gain between (i, j) is αi,j , where
0 < αA ≤ αi,j ≤ 1. αA is the minimum channel power
gain between any transmitter-receiver pair, and is related to
the diameter of the network,dA, asαA = 1

dη
A

. The assumption

αi,j ≤ 1 implies that a receiver cannot receive power more
than the power transmitted.

B. Objective

Our objective is to study the scaling of the aggregate end-
to-end throughput of the described wireless network for the
interference and path loss model discussed above. We study
the scaling laws for different network power constraint regimes
- large P̄ (in terms of P̄ ) and moderateP̄ (in terms of
n). We consider spatial reuse, multihopping and cooperative
communication as the strategies used in the network.

III. SCALING LAWS FORLARGE P̄

In this section, we will obtain scaling laws of dense wire-
less networks with respect tōP . Suppose that the source-
destination pairs are chosen arbitrarily (instead of randomly,
as stated earlier), such that the s-d pairs are chosen as close
as possible. Then, the aggregate end-to-end throughput achiev-
able in this scenario is the same as the maximum spatial reuse
feasible. Clearly, the throughput achieved in this scenario,
upper bounds the throughput achieved for the random traffic
model (notice that the first phase in every communication
strategy studied in [1], [2] and [3] is spatial reuse). Now, we
assume that the nodes use single user decoding receivers, treat-
ing every simultaneous transmission (other than the intended
one) as interference. We will now upper bound the bit rate
achievable in this scenario.

A. An upper bound on the Network Throughput

Consider a slott, when nodei, 1 ≤ i ≤ n, transmits with
powerPi(t), and the transmit powers are such that they satisfy
a network power constraint,

∑n
i=1 Pi(t) ≤ P̄ (t). For ease of

notation, we will omit the indext now, and include it again
later (at the end of this section). The SINR achievable (in slot
t) at the receiver of a transmitteri is bounded above by

SINR ≤ αiPi

N +
∑

{j 6=i} αjPj

whereαi andαj are the constant gains at the receiver from the
transmittersi andj andN is the noise power. Then, it follows
from the interference model, that the SINR is bounded above
as

SINR≤ Pi

N + αA

∑
{j 6=i} Pj

For an allocated total network power of̄P , an optimal power
allocation (that maximizes throughput) must satisfy

∑
i Pi =

P̄ . Hence, using the equality
∑

i Pi = P̄ in the above
expression, we have,

SINR ≤ Pi

N + αA(P̄ − Pi)

Now, the maximum throughput achievable in the network is
bounded above by

C(αA) :=
∑
i∈T

log
(

1 +
Pi

N + αA(P̄ − Pi)

)



whereT indexes the set of transmitters with positive power.
We denote the above expression asC(αA), denoting the
dependence on the parameterαA. We will now obtain an upper
bound forC(αA) by optimising the above expression forPi,
i.e., we will maximizeC(αA) subject to the power constraint∑

i Pi ≤ P̄ .

B. Optimization Problem

Define f(P ) := log
(
1 + P

N+αA(P̄−P )

)
. Then the opti-

mization problem can be written as

max
∑

i

f(Pi) (1)

subject to the power constraint∑
i

Pi ≤ P̄

Lemma 3.1:f(P ) is monotone increasing withP for 0 ≤
P ≤ P̄ .

Lemma 3.2:Suppose that2αA − 1 > 0. Then,f is convex
in P for 0 ≤ P ≤ P̄ . Further, the solution for the optimization
problem in (1) is to allot all the power to a single transmitter.
And the optimal value for the objective function in (1) isf(P̄ ).

Proof: See Appendix A for the proof.
Lemma 3.3:Suppose that2αA − 1 < 0. For largeP̄ , there

exists aP ′, 0 ≤ P ′ ≤ P̄ , such thatf(P ) is concave uptoP ′

and convex thereafter.
Proof: See Appendix A for the proof.

f(P̄ ) = log
(
1 + P̄

N

)
, increases to infinity withP̄ , and

f ′(0) = 1
N+αAP̄

, decreases to0 asP̄ increases. Now, observe

that, for largeP̄ , we havef ′(0) ≤ f(P̄ )
P̄

. The following lemma
upper boundsf(P ) for all 0 ≤ P ≤ P̄ .

Theorem 3.1:Suppose that2αA − 1 < 0. For large P̄ ,
f(P ) ≤ f(P̄ )

P̄
P for all 0 ≤ P ≤ P̄ .

Proof: See Appendix A for the proof.
Define g(P ) := f(P̄ )P

P̄
. Let {P̃i} be an optimal solution

for the optimization problem (1). From Theorem 3.1 and the
definition of g(·), we have,∑

i

f(P̃i) ≤
∑

i

g(P̃i)

wheneverP̄ is large enough. Observe that,∑
i

g(P̃i) =
∑

i

f(P̄ )
P̄

P̃i =
f(P̄ )

P̄

∑
i

P̃i =
f(P̄ )

P̄
P̄ = f(P̄ )

This implies that for largēP , f(P̄ ) ≥
∑

i f(Pi), for any power

allocation, orf(P̄ ) is the optimal solution. Thus,log
(
1 + P̄

N

)
is an upper bound on the network throughput. This implies that
the maximum achievable bit rate for a dense network with
arbitrary s-d pairs isO(log(P̄ )).
Remark:

1) We have only shown that for a per slot net-
work power constraintP̄ (t), the aggregate bit rate
scales aslog(P̄ (t)). It is now straightforward to ex-
tend the above results to a sequence of network

power constraints{P̄ (t), t = 1, 2, · · · } which satisfy
limt→∞

1
t

∑t
i=1 P̄ (i) ≤ P̄ .

2) We have shown that the aggregate bit rate of an arbitrary
network scales asO(log(P̄ )) (this is also the maximum
bit rate achievable in the network). Hence, the aggregate
end-to-end throughput of a random network (as defined
in Section II) can scale only asO(log(P̄ )).

3) Also, observe that the above results depend only onαA

and P̄ , but are independent of the number of the nodes
in the network (and hence, on the spacing between the
nodes).

4) We callP̄ greater than the threshold (according to Theo-
rem 3.1) for which the logarithmic scaling holds, as large
power regime. And networks with total power constraint
P̄ lesser than this threshold are called moderate power
networks.

5) For an extended network, where the network size scales
with n, the path loss from the farthest node decreases to
0. Forη > 2, [1] showed that the cumulative interference
from simultaneous transmitters can then be bounded,
thus achievingΘ(n) aggregate bit rate with spatial reuse.

Using multihopping strategy, [1] achievedΘ
(
n

1
2

)
end-

to-end throughput for extended networks.
6) Consider a simple TDM scheme, where each node

transmits with power̄P = np, to its intended destination
in its slot. Since a node gets access to the channel once
in everyn slots, the average power per node isP̄

n = p.
And the achieved bit rate in the proposed scheme scales
as log(n). This proves the achievability ofΘ(log(n))
for dense wireless networks.

The following theorem summarizes the above arguments.
Theorem 3.2:The aggregate end-to-end throughput of a

dense wireless network scales asΘ(log(P̄ )), whereP̄ is the
network average power constraint. In terms of the number
of nodes,n, the maximum achievable throughput of a dense
network scales asΘ(log(n)).

IV. SPATIAL REUSE AND COOPERATIVECOMMUNICATION

For dense wireless networks, [1], [2] and [3] achieved
Θ

(
n

1
2

)
, Θ

(
n

2
3

)
and Θ(n) end-to-end throughput respec-

tively, by using a far field path loss model (with a path loss of
1
dη for any transmitter-receiver separation ofd). As observed in
[4], this model requires power amplification by the channel for
sufficiently small values ofd, and hence, is not practical. The
scaling fails when the nodes become sufficiently close, i.e.,
whenn tends to infinity. In this section, we are interested in
understanding the feasibility of the communication strategies
discussed in [1] (spatial reuse and multihopping), [2] (spatial
reuse, multihopping and cooperative communication) and [3]
(spatial reuse, multihopping, cooperative communication and
hierarchy) for sufficiently largen, when the path loss model
of 1

dη still holds.
For example, consider a 1Km× 1Km planar area, with

a million nodes arranged in a square grid with a minimum
spacing of1 metre between them. For a carrier frequency of



3 GHz, the carrier wavelength is around0.1m much smaller
than the node separation of1m. The path loss model holds
for this deployment, and hence, we could expect that such
results as spatial reuse (ofΘ(n)), multihopping (ofΘ

(
n

1
2

)
)

and cooperative communication (ofΘ
(
n

2
3

)
or Θ(n)) hold

approximately (for e.g., with some probability). Observing
that spatial reuse is essential to every communication strategy
(studied in [1], [2] and [3]), in this context, we will study the
feasibility ofΘ(n) spatial reuse in the network, and the impact
it has on using cooperative communication techniques.

The following simple calculations given below show that in
order to support a spatial reuse ofΘ(n), the network size must

be at least as large asΘ
(
n

1
η

)
. Let us fix the SINR requirement

for point-to-point communication toβ, independent of the
number of nodes and the dimensions of the network. Suppose
that all the transmissions involve the constant transmit power
p. Let S(n, A) denote the spatial reuse achievable in the
network with n nodes while supporting a SINR ofβ. Then,
this implies that the maximum interference gain observed at
any receiver needs to be bounded above, as seen below.

β ≤ SINR≤
(

p

N + p(S(n, A)− 1)αA

)
This implies that

(S(n, A)− 1)αA ≤ γ

for some constant,γ, independent ofn or p. Absorbing the
constants and simplifying the expression, we have,

S(n, A)αA ≤ 1

Hence, to achieve a spatial reuse ofΘ(n), we require,

Θ(n)αA ≤ 1 (2)

In terms ofdA, we have,

Θ(n)
1

dη
A

≤ 1

or,
Θ(n) ≤ dη

A

The above expression implies that the total spatial reuse
feasible in the network is bounded by the dimensions of the
network. In other words, to support a spatial reuse ofΘ(n), the

dimensions of the network should at least scale asΘ
(
n

1
η

)
,

or the areaA should be as large asΘ
(
n

2
η

)
.

Viewed differently, the end-to-end path loss between any
source-destination pair (according to the random traffic model)
will scale at least asΘ

(
1
n

)
(from Equation (2)), when the

spatial reuse scales asΘ(n). The cooperative communication
models described in [2] and [3], require the source cluster (the
biggest cluster containing the source node) and the destination
cluster (the biggest cluster containing the destination node)
to communicate directly, using cooperative communication
involving the nodes in the cluster. For a spatial reuse ofΘ(n),
and the number of nodes in the clusterM (M < Θ(n), for

e.g., in [2], M = n
2
3 ), an upper bound on the maximum bit

rate achievable in the cooperative communication phase is,

n log
(
1 +

pαA

N

)
≤ n log

(
1 +

p

Θ(n)N

)
where we have modeled the cooperative communication phase
as comprising ofn parallel independent channels, with only
the path loss between a transmitter-receiver pair in the cluster.
Observe that the throughput, as given by the above expression
does not scale asΘ(n). In fact, it is bounded above by a
constant. The key observation is that the path loss that permits
spatial reuse in the channel is so restrictive that it is unable
to support long distance MIMO communications. It is easy
to verify from the above formulation that, for any power
allocation with a total network power ofnp, the achievable
throughput using cooperative communication (as reported in
[2] and [3]) is bounded by a constant, independent ofn.

Returning to the example of a million nodes arranged in
a grid in a 1Km× 1Km planar area, we see that, while
spatial reuse and multihopping may increase the performance
of the system (as compared to direct transmissions involving
the s-d pairs), cooperative communication does not. In other
words, while spatial reuse and multihopping can coexist,
even in a practical scenario, for sufficiently largen, spatial
reuse and cooperative communication (as reported in [2] and
[3]) cannot. The direct communication between the source-
destination clusters should be avoided in order to enhance
the throughput in realistic scenarios. However, by restricting
the communication distance between the clusters, we lose
throughput due to multihopping costs.

V. CONCLUSIONS

The important feature of a dense network, as compared
to an extended network is the positive interference due to a
simultaneous transmission any where in the network. We have
observed that this implies that the scaling results are a function
of both the number of nodes and the network power. More
specifically, for large power networks, we observe that the
achievable throughput scales only asΘ(log(P̄ )), irrespective
of the number of nodes in the network. However, for moderate
P̄ , when spatial reuse may be efficient, we showed that
spatial reuse puts a restriction on the network size, which
affects the gains achieveable using cooperative communication
techniques.
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APPENDIX

A. Proofs for Section III

Lemma 3.1 :f(P ) is monotone increasing inP for 0 ≤
P ≤ P̄ .

Proof: Differentiatingf(P ) with respect toP , we have,

f ′(P ) =
1

1 + P
N+αAP̄−αAP

×
(

1
N + αAP̄ − αAP

+
αAP

(N + αAP̄ − αAP )2

)
=

1
N + αAP̄ − αAP + P

(
1 +

αAP

(N + αAP̄ − αAP )

)
=

(
1

N + αAP̄ + P − αAP

) (
(N + αAP̄ )

N + αAP̄ − αAP

)
Clearly, f ′(P ) ≥ 0 for all 0 ≤ P ≤ P̄ . Hence,f(P ) is
monotone increasing for all0 ≤ P ≤ P̄ .

Differentiatingf ′(P ) with respect toP again, we have,

f ′′(P ) =
d

dP

(
1

K + (1− αA)P
1

K − αAP

)
We have used the substitutionK := N + αAP̄ in the above
expression. Also, we are interested only in the sign off ′′(P ),
hence, we have ignored(N +αAP̄ ) in the numerator as well.

f ′′(P ) =
1

K − αAP

(
−1(1− αA)

(K + (1− αA)P )2

)
+

1
K + (1− αA)P

(
−1×−αA

(K − αAP )2

)
=

1
(K − αAP )(K + (1− αA)P )

×
(

−(1− αA)
K + (1− αA)P

+
αA

K − αAP

)
Clearly, K − αAP = N + P̄ − αAP ≥ 0 (for 0 ≤ P ≤ P̄ )
andK + (1−αA)P ≥ 0. Hence, we will concentrate only on
the terms inside the braces,

f ′′(P ) =
−(1− αA)

K + (1− αA)P
+

αA

K − αAP

=
−(K − αAP )(1− αA) + αA(K + (1− αA)P )

(K + (1− αA)P )(K − αAP )

Ignoring the denominator (which is always positive), we have,

f ′′(P ) = −[K −KαA + α2
AP − αAP ]

+ [αAK + αAP − α2
AP ]

= (2αA − 1)K + 2αAP (1− αA)

Clearly, 1 ≥ αA. Now, if 2αA − 1 > 0, then we see that
the above expression is positive for all0 ≤ P ≤ P̄ . Hence,
f ′′ ≥ 0, or, the functionf(P ) is convex increasing.

Lemma 3.2 : Suppose2αA − 1 > 0. Then,f is convex in
P for 0 ≤ P ≤ P̄ . Further, the solution for the optimization
problem in (1) is to allot all the power to a single transmitter.
And the optimal value for (1) isf(P̄ ).

Now suppose that2αA − 1 < 0. Then,f ′′(0) < 0 and for
large enoughP̄ , f ′′(P̄ ) > 0, i.e., for largeP̄ , there would
exist aP ′ ≤ P̄ such thatf ′′(P ′) ≤ 0 for all 0 ≤ P ≤ P ′

and f ′′(P ) ≥ 0 for all P ′ ≤ P ≤ P̄ . The following lemma
summarizes the idea.

Lemma 3.3 : Suppose that2αA − 1 < 0. For largeP̄ , there
exists aP ′, 0 ≤ P ′ ≤ P̄ , such thatf(P ) is concave uptoP ′

and convex there after.
From the definition of f(·), we see that,f(P̄ ) =

log
(
1 + P̄

N

)
increases to infinity withP̄ . Also, f ′(0) =

1
N+αAP̄

, decreases to0 as P̄ increases. Further, for largēP ,

we see thatf ′(0) ≤ f(P̄ )
P̄

.
Theorem 3.1 : Suppose that2αA − 1 < 0. For largeP̄ ,

f(P ) ≤ f(P̄ )
P̄

P .
Proof: From Lemma 3.3, we know thatf(P ) is concave

upto P ′. Hence,f(P ) ≤ f(0) + f ′(0)P for 0 ≤ P ≤ P ′.
Sincef(0) = 0, we have,f(P ) ≤ f ′(0)P . For largeP̄ , we
havef ′(0) ≤ f(P̄ )

P̄
(from the previous arguments). Hence, for

0 ≤ P ≤ P ′,

f(P ) ≤ f(P̄ )
P̄

P

In the regionP ′ ≤ P ≤ P̄ , f(P ) is convex increasing, hence,
we have,

f(P )− f(P ′) ≤ (f(P̄ )− f(P ′))
P̄ − P ′ (P − P ′)

Simplifying the above expression, we have,

f(P ) ≤ f(P ′) + f(P̄ )
(P − P ′)
P̄ − P ′ − f(P ′)

(P − P ′)
P̄ − P ′

Or,

f(P ) ≤ f(P̄ )
(P − P ′)
P̄ − P ′ + f(P ′)

(
1− (P − P ′)

P̄ − P ′

)
Or,

f(P ) ≤ f(P̄ )
(P − P ′)
P̄ − P ′ + f(P ′)

P̄ − P

P̄ − P ′

Substitutingf(P ′) ≤ f ′(0)P ′, we have,

f(P ) ≤ f(P̄ )
(P − P ′)
P̄ − P ′ + f ′(0)P ′ P̄ − P

P̄ − P ′

For largeP̄ , f ′(0) ≤ f(P̄ )
P̄

. Substituting again, we get,

f(P ) ≤ f(P̄ )
(P − P ′)
P̄ − P ′ +

f(P̄ )
P̄

P ′ P̄ − P

P̄ − P ′

Or,

f(P ) ≤ f(P̄ )
(

(P − P ′)
P̄ − P ′ +

P ′

P̄

P̄ − P

P̄ − P ′

)
Simplifying the above expression, we have,

f(P ) ≤ f(P̄ )
P

P̄

for all P ′ ≤ P ≤ P̄ , which completes the proof.


