A Comparison of Approaches to Carrier Generation for Zigbee Transceivers 22<sup>nd</sup> International Conference on VLSI Design, New Delhi

> Leburu Manojkumar Arun Mohan Nagendra Krishnapura

Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India

6 January 2009

Leburu Manojkumar Arun Mohan Nagendra Krishnapura A Comparison of Approaches to Carrier Generation for Zigbee Tra

ヘロン ヘ回 とくほ とくほ とう

-

### Zigbee transceiver



Leburu Manojkumar Arun Mohan Nagendra Krishnapura

- Local oscillator requirements
- IQ generation by dividing a double frequency waveform
- IQ generation by multiplying half frequency waveforms
- Design details
- Simulation results
- Conclusions

(ロ) (同) (三) (三) (三) (○)

## Local oscillator requirements



- 2.405-2.48 GHz in 5 MHz steps
- Phase noise  $\leq -92 \, dBc/Hz$  at 3.5 MHz offset
- Settling time  $\leq$  200  $\mu$ s (to 40ppm accuracy)
- Spurs  $\leq -20 \, dBc @ 5 \, MHz$ ,  $\leq -50 \, dBc @ 10 \, MHz$

★ E ► ★ E ►

< 🗇 🕨

## Choice of oscillator frequency



- Tx signal coupling pulls the oscillator and increases jitter
- Oscillator frequency should be different from the carrier

・ 回 ト ・ ヨ ト ・ ヨ ト

### Quadrature generation using divide-by-2



Leburu Manojkumar Arun Mohan Nagendra Krishnapura A Comparison of Approaches to Carrier Generation for Zigbee Tra

★ E → < E →</p>

### Quadrature generation using multiplication



Leburu Manojkumar Arun Mohan Nagendra Krishnapura A Comparison of Approaches to Carrier Generation for Zigbee Tra

★ E → < E →</p>



- Higher frequency
- LC oscillator
- Lower phase noise
- More area



- Lower frequency
- Ring oscillator
- Higher phase noise

< □ > < □ > < □ > < Ξ > < Ξ

2

Compact

# LC oscillator



- 140 µm square spiral
- 6 turns
- 6 μm trace width

- 2.06  $\mu$ m thick top metal
- 2 µm spacing
- 5 section distributed model for simulations

ヘロト ヘ回ト ヘヨト ヘヨト

#### Master slave divide by two



Leburu Manojkumar Arun Mohan Nagendra Krishnapura A Comparison of Approaches to Carrier Generation for Zigbee Tra

(E)

## Active inductor load



Leburu Manojkumar Arun Mohan Nagendra Krishnapura A Comparison of Approaches to Carrier Generation for Zigbee Tra

## LC VCO+divider waveforms



Leburu Manojkumar Arun Mohan Nagendra Krishnapura

# LC VCO+divider characteristics



Leburu Manojkumar Arun Mohan Nagendra Krishnapura

A Comparison of Approaches to Carrier Generation for Zigbee Tra

## LC VCO+divider phase noise



Leburu Manojkumar Arun Mohan Nagendra Krishnapura

#### Trade off phase noise for area/power?

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

R<sub>p</sub>: tank loss (shunt equivalent)

4 B b

3

$$L(f) \propto \frac{1}{R_p}$$
  
 $V_{ppd} = \frac{4}{\pi} l_0 R_p$ 

## Ring oscillator delay cell

![](_page_15_Figure_1.jpeg)

Leburu Manojkumar Arun Mohan Nagendra Krishnapura

A Comparison of Approaches to Carrier Generation for Zigbee Tra

(E)

### Frequency doubler

![](_page_16_Figure_1.jpeg)

Leburu Manojkumar Arun Mohan Nagendra Krishnapura

#### Voltage to current converter

![](_page_17_Figure_1.jpeg)

(E)

## Ring VCO with a constant current biasing

![](_page_18_Figure_1.jpeg)

# Ring VCO with a constant $g_m$ biasing

![](_page_19_Figure_1.jpeg)

# Ring VCO with mixed biasing

![](_page_20_Figure_1.jpeg)

## Ring VCO+doubler output waveforms

![](_page_21_Figure_1.jpeg)

Ring VCO + mixers output

## **Ring VCO+doubler characteristics**

![](_page_22_Figure_1.jpeg)

### Ring VCO+doubler phase noise

![](_page_23_Figure_1.jpeg)

Leburu Manojkumar Arun Mohan Nagendra Krishnapura

# Quadrature generator layouts

![](_page_24_Figure_1.jpeg)

< 🗇 🕨

→ E → < E</p>

|               | LC osc. + divider         | Ring osc. + doubler       |
|---------------|---------------------------|---------------------------|
| VCO           | 1 mA                      | 1.44 mA                   |
| Bias circuit  | —                         | 0.355 mA                  |
| V-I converter | —                         | 0.1 mA                    |
| Divider       | 1.8 mA                    | —                         |
| Multipliers   | —                         | 0.45 mA each              |
| Buffers       | 0.7 mA each               | 0.83 mA each              |
| Total current | 4.2 mA                    | 4.455 mA (nom.)           |
|               |                           | 6 mA (max.)               |
| Phase noise   | -117 dBc/Hz               | -97 dBc/Hz                |
| Area          | 360 $\mu$ m x 140 $\mu$ m | 160 $\mu$ m x 140 $\mu$ m |
| $K_{vco}$     | 200 MHz/V                 | 220 MHz/V                 |
| Technology    | 0.18 $\mu$ m CMOS         |                           |

<ロ> <同> <同> < 同> < 同> 、

## Frequency synthesizer

![](_page_26_Figure_1.jpeg)

- $K_{vco} = 200 \text{ MHz/V}$
- Loop bandwidth = 53 kHz

- zero: 9 kHz
- high freq. pole: 293 kHz

・ロン ・回 と ・ ヨ と ・ ヨ と

## Frequency synthesizer layout

![](_page_27_Figure_1.jpeg)

Leburu Manojkumar Arun Mohan Nagendra Krishnapura

| Programmable divider                   | 1.09 mA                   |
|----------------------------------------|---------------------------|
| Differential to single ended converter | 22 $\mu$ A                |
| Phase frequency detector               | 23 $\mu$ A                |
| Charge pump                            | 20 µA                     |
| Bias generation circuits               | 350 $\mu$ A               |
| Total current                          | 1.5 mA                    |
| Settling time                          | 110 $\mu$ s               |
| Area                                   | 400 $\mu$ m x 310 $\mu$ m |
| Reference feedthrough                  | -39 dBc (5 MHz)           |
|                                        | -50 dBc (10 MHz)          |
| Technology                             | $0.18\mu { m m}$ CMOS     |

Ring oscillator based synthesizer

- Meets Zigbee specifications
- Consumes 40% higher power than an LC oscillator
- Occupies 2.25× smaller area than an LC oscillator
- LC oscillator based synthesizer
  - Phase noise much better than Zigbee requirements
  - Area (quality factor) and power limited by amplitude

Comparison valid for finer geometries as well

- No significant advantage for oscillators
- Dividers, multipliers benefit from scaling

#### References

![](_page_30_Picture_1.jpeg)

"Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (LR-WPANs)", IEEE 802.15.4, available for download at http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf

![](_page_30_Picture_3.jpeg)

Behzad Razavi, RF Microelectronics, Prentice Hall, 1997.

![](_page_30_Picture_5.jpeg)

M. Tiebout, Low power VCO design in CMOS, Springer, 2006.

![](_page_30_Picture_7.jpeg)

A. S. Porret et al., "Design of High-Q Varactors for Low-Power Wireless Applications Using a Standard CMOS Process", *IEEE Journal of Solid-state Circuits*, pp. 337-345, vol. 35, no. 3, March 2000.

E. Sackinger and W. C. Fischer, "A 3-GHz 32-dB CMOS limiting amplifier for SONET OC-48 receivers", *IEEE Journal of Solid-State Circuits*, pp. 1884-1888, vol. 35, no. 12, Dec. 2000.

![](_page_30_Picture_10.jpeg)

Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, August 2000.

![](_page_30_Picture_12.jpeg)

J. Craninckx and M. Steyaert, "A fully integrated CMOS DCS-1800 frequency synthesizer", *IEEE Journal of Solid State Circuits*, vol. 33, no. 12, pp. 2054-2065, 1998.

![](_page_30_Picture_14.jpeg)

C. Vaucher et al., "A family of low-power truly modular programmable dividers in standard 0.35 um CMOS technology," *IEEE Journal of Solid-state Circuits*, vol. 35, no. 7, pp. 1039-1045, 2000.

(ロ) (同) (三) (三) (三) (0)