A Micropower Log-Domain Filter Using Enhanced Lateral PNPs in a 0.25 µm CMOS Process

Nagendra Krishnapura¹ and Yannis Tsividis² Presenter: Atsushi Yoshizawa³

¹Celight Inc., 485 D Rt. 1 S, Iselin, NJ, 08830, USA.
²Columbia University, New York, NY, 10027, USA.
³Sony Corporation, Tokyo, Japan.

Outline

- Enhanced lateral PNP transistor.
- Log-domain filter.
- Measurement results.
- Conclusions.

Conventional lateral transistor

• Parasitic transistor Q_S lowers α and β .

Enhanced lateral transistor

- Gate connected to the base.
- Surface is more negative than deep inside the n⁻ well.

Enhanced lateral transistor

• $V_{EB}(Q_S) < V_{EB}(Q_L) \Rightarrow Q_S$ is suppressed.

First-order log-domain filter

• Large signal linear from i_A to i_D .

• Two first-order filters in a feedback loop.

Second-order Butterworth filter

• bandwidth = $\sqrt{2}I_0/C$ rad/s.

- 0.25 μ m CMOS technology.
- Enhanced lateral PNP transistors.
- pMOS accumulation capacitors.
- Supply voltage = 1.5 V.
- $I_0 = 0.5 \,\mu \text{A}$.

Chip photograph

Lateral PNP: Measured I-V characteristics

• Slope factor = 1.04; Early voltage = 2.3 V.

Measured results: Frequency response

• dc gain = -4.1 dB; bandwidth = 22 kHz.

Measured results with $I_o = 0.5 \,\mu \text{A}$

Summary

Technology	0.25µm CMOS	
Chip area	$0.085\mathrm{mm^2}$ (excl. pads)	
Supply voltage	1.5 V	
Bias current (I_0)	0.5µA	1µA
-3 dB BW (kHz)	22	41
Power diss. (μ W)	4.1	8.3
o/p noise (rms nA)	0.25	0.46
<i>S/N</i> @ 1% <i>THD</i>	56.1 dB	47.0 dB
Max. $S/(N + THD)$	44.9 dB	40.5 dB
Power dissipation order BW	93.2 pJ	101.2 pJ

Conclusions

- An alternative technique for designing log-domain filters in CMOS technologies is explored.
- A second-order filter using enhanced lateral PNP transistors is demonstrated.
- Performance of the prototype filter is shown to be comparable to that of log-domain filters fabricated in bipolar technologies.