Switched-Capacitor Companding Filters

N. Krishnapura ${ }^{1}$, Y. Tsividis ${ }^{1}$,

K. Nagaraj ${ }^{2}$, K. Suyama ${ }^{1}$
${ }^{1}$ Dept. of EE, Columbia University, New York, NY, 10027, USA.
${ }^{2}$ Texas Instruments, Edison, NJ, 08837, USA.

Outline

- Instantaneous companding.
- Companding using gain switching.
- Switched-capacitor implementation.
- Companding using a piecewise-linear exponential.
- Increase in dynamic range for a fixed power consumption.

Motivation

- Conventional linear filters consume a power that is proportional to the maximum S / N ratio and hence, the dynamic range.
- Companding is used to increase the dynamic range in transmission systems.
- Expected to do the same for filters without a proportionate increase in their power consumption.
- Try to keep the internal signals well above the noise and below the saturation limits in the filter circuit.

Companding

- Filters 1 \& 2 have skewed operating ranges, identical dynamic range.
- Use filter-1 for large signals, filter-2 for small signals.
- Switch between filter-1 and filter-2 depending on the signal level, without changing the input-output behavior.
- DR increases by $20 \log (k) d B$.

1. Gain switching at input and output

Linear first order SC accumulator prototype

u : input voltage
x : state variable
y : output (charge)

- input gain $\alpha \mathrm{A}$
- output gain α C
$y[n]=C \cdot x[n]$

Gain switching at input and output

Define a new state variable $w: w[n]=g[n] \cdot x[n]$

- Realizes a linear accumulator, identical to the prototype.
- g can be selected to achieve companding.
- One of the possibilities: "Analog floating point technique" (Blumenkrantz '95).

Mapping between x and w (four values of g)

- g decreases by a factor of 2 whenever w increases beyond a predetermined level, and vice versa. (Blumenkrantz '95)
- monotonically increasing x, but a limited value of w.

Switched-capacitor implementation

- When g doesn't change, same as a conventional accumulator.
- A set of comparators are used to detect overflow ($>\mathrm{V}_{\max }$) or underflow ($<0.5 \cdot \mathrm{~V}_{\max }$) of the state variable.
- A state machine used to "remember" the current value of g.
- An array of capacitors used at the input and the output to alter the gains as desired.

Switched-capacitor implementation

Remarks

- As the number of segments increases:
- Larger signals can be handled.
- Input / output capacitor spread increases.
- Practical limit ~ 3-4 values of g.
- With 4 segments:
- Can handle a 8 X larger signal than a linear filter without distortion.
- Output noise: same as in the linear case (reduces to a conventional filter for small signals).
- Has $64 X$ larger dynamic range $\left(=P_{\text {max }} / P_{\text {min }}\right)$ than the linear filter.
- Uses ~ 8 X larger bias current (op-amp loading) in the worst case $\Rightarrow 8 \times$ larger power drawn from the supply.
- A conventional filter would use 64 X larger bias current and 64 X larger capacitor.

Simulation: $6^{\text {th }}$ order low-pass filter

compressed output

expanded output

Stays away from the noise-prone low-voltage regions.

2. Use a piecewise linear compression

Mapping between x and w

- The slope decreases by a factor of 2 in successive segments, but the mapping is continuous.
- input, output blocks similar to the previous case.

Comparison

Compression	
Gain switching	$8: 1$
Piecewise linear	$3.75: 1$

gain switching	piecewise linear
+ larger improvement in dynamic	- smaller improvement in dynamic

range.

- large "jumps" in the o/p.
+ \# comparators: fixed
range.
+ no "jumps" in the o/p.
- \# comparators α \# segments

Conclusions

- Two possible techniques for implementing switchedcapacitor companding filters are discussed.
- The increase in the dynamic range for a given power consumption is estimated.
- Companding can overcome the tradeoff between the dynamic-range and the power consumption that is present in linear switched capacitor filters.

Switched-capacitor implementation

- Input / output gain values: switch capacitors in/out
- updating term:
$-g[n]=g[n-1]$

$$
(B+F) \cdot w[n+1]=B \cdot w[n]-A \cdot g[n+1] u[n+1]
$$

$-g[n]=2 g[n-1]$

$$
(B+F) \cdot w[n+1]=2 B \cdot w[n]-A \cdot g[n+1] u[n+1]
$$

$-g[n]=0.5 g[n-1]$

$$
(B+F) \cdot w[n+1]=\frac{B}{2} \cdot w[n]-A \cdot g[n+1] u[n+1]
$$

Switched-capacitor implementation

Result

conventional

companding

- output maximum $=\mathrm{V}_{\max }$
- output minimum $=\mathrm{N}_{\text {out }}$
- load = C + (B+F)||A
- capacitance:

$$
A+B+C+F
$$

- power = P
- dynamic Range: DR
- (DR / P)
- output maximum $=8 \mathrm{~V}_{\text {max }}$
- output minimum $=\mathrm{N}_{\text {out }}$
- load : C/g[n] + B + (B+F)||A
- capacitance: $15 A+3 B+15 C+F$
- power $\approx 8 \cdot \mathrm{P}$
- dynamic Range: 64•DR
- 8•(DR / P)

Gain switching - cont'd...

- Output rises to $8 \mathrm{~V}_{\max }$!
- Incorporate an $8 x$ attenuator in the expandor ($1 / g[n]$)
- Input should also be limited to $\mathrm{V}_{\max }$
- Apply 8 x smaller input, increase the input capacitors 8 x

This does not alter the dynamic range

