Switched-Capacitor Companding Filters

N. Krishnapura¹, Y. Tsividis¹, K. Nagaraj², K. Suyama¹

¹ Dept. of EE, Columbia University, New York, NY, 10027, USA. ² Texas Instruments, Edison, NJ, 08837, USA.

Outline

- Instantaneous companding.
- Companding using gain switching.
- Switched-capacitor implementation.
- Companding using a piecewise-linear exponential.
- Increase in dynamic range for a fixed power consumption.

Motivation

- Conventional linear filters consume a power that is proportional to the maximum S/N ratio and hence, the dynamic range.
- Companding is used to increase the dynamic range in transmission systems.
- Expected to do the same for filters without a proportionate increase in their power consumption.
- Try to keep the internal signals well above the noise and below the saturation limits in the filter circuit.

- Filters 1 & 2 have skewed operating ranges, identical dynamic range.
- Use filter-1 for large signals, filter-2 for small signals.
- Switch between filter-1 and filter-2 depending on the signal level, without changing the input-output behavior.
- DR increases by 20log(k) dB.

1. Gain switching at input and output

Linear first order SC accumulator prototype

u: input voltage*x*: state variable*y*: output (charge)

- input gain α A
- output gain α C

Gain switching at input and output

Define a new state variable w: $w[n] = g[n] \cdot x[n]$

- Realizes a linear accumulator, identical to the prototype.
- g can be selected to achieve companding.
- One of the possibilities: "Analog floating point technique" (Blumenkrantz '95).

Mapping between x and w (four values of g)

- g decreases by a factor of 2 whenever w increases beyond a predetermined level, and vice versa. (Blumenkrantz '95)
- monotonically increasing *x*, but a limited value of *w*.

- When g doesn't change, same as a conventional accumulator.
- A set of comparators are used to detect overflow (> V_{max}) or underflow (< 0.5- V_{max}) of the state variable.
- A state machine used to "remember" the current value of g.
- An array of capacitors used at the input and the output to alter the gains as desired.

Remarks

- As the number of segments increases:
 - Larger signals can be handled.
 - Input / output capacitor spread increases.
 - Practical limit ~ 3-4 values of g.
- With 4 segments:
 - Can handle a 8 X larger signal than a linear filter without distortion.
 - Output noise: same as in the linear case (reduces to a conventional filter for small signals).
 - Has 64 X larger dynamic range (= P_{max}/P_{min}) than the linear filter.
 - Uses ~ 8 X larger bias current (op-amp loading) in the worst case \Rightarrow 8 X larger power drawn from the supply.
 - A conventional filter would use 64 X larger bias current and 64 X larger capacitor.

Simulation: 6th order low-pass filter

Stays away from the noise-prone low-voltage regions.

2. Use a piecewise linear compression

- The slope decreases by a factor of 2 in successive segments, but the mapping is continuous.
- input, output blocks similar to the previous case.

ganterning	precettiee inteal
larger improvement in dynamic	 smaller improvement in dynamic
range.	range.
large "jumps" in the o / p.	no "jumps" in the o / p.
# comparators: fixed	- # comparators α # segments
	larger improvement in dynamic range. large "jumps" in the o / p. # comparators: fixed

Conclusions

- Two possible techniques for implementing switchedcapacitor companding filters are discussed.
- The increase in the dynamic range for a given power consumption is estimated.
- Companding can overcome the tradeoff between the dynamic-range and the power consumption that is present in linear switched capacitor filters.

- Input / output gain values: switch capacitors in/out
- updating term:

$$-g[n] = g[n-1]$$

$$(B+F) \cdot w[n+1] = B \cdot w[n] - A \cdot g[n+1]u[n+1]$$

$$-g[n] = 2g[n-1]$$

$$(B+F) \cdot w[n+1] = 2B \cdot w[n] - A \cdot g[n+1]u[n+1]$$

$$-g[n] = 0.5g[n-1]$$

$$(B+F) \cdot w[n+1] = \frac{B}{2} \cdot w[n] - A \cdot g[n+1]u[n+1]$$

Result

conventional

- output maximum = V_{max}
- output minimum = N_{out}
- load = C + (B+F)||A|
- capacitance:
 A + B + C + F
- power = P
- dynamic Range: DR
- (DR / P)

companding

- output maximum = $8V_{max}$
- output minimum = N_{out}
- load : C/g[n] + B + (B+F)||A
- capacitance:
 15A + 3B + 15C+F
- power $\approx 8 \cdot P$
- dynamic Range: 64-DR
- 8-(DR / P)

Gain switching - cont'd...

- Output rises to 8V_{max}!
 - Incorporate an 8x attenuator in the expandor (1/g[n])
- Input should also be limited to V_{max}
 - Apply 8x smaller input, increase the input capacitors 8x

This does not alter the dynamic range