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Outline

Instantaneous companding.

Companding using gain switching.
Switched-capacitor implementation.

Companding using a piecewise-linear exponential.

Increase in dynamic range for a fixed power
consumption.



Motivation

Conventional linear filters consume a power that is
proportional to the maximum S/N ratio and hence, the
dynamic range.

Companding is used to increase the dynamic range
In transmission systems.

Expected to do the same for filters without a
proportionate increase in their power consumption.

Try to keep the internal signals well above the noise
and below the saturation limits in the filter circuit.



Companding
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Filters 1 & 2 have skewed operating ranges, identical dynamic
range.

Use filter-1 for large signals, filter-2 for small signals.

Switch between filter-1 and filter-2 depending on the signal level,
without changing the input-output behavior.

DR increases by 20log(k) dB.



1. Gain switching at input and output

Linear first order SC accumulator prototype
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Gain switching at input and output

Define a new state variable w: |\w[n] = g[n] X[ n]
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Realizes a linear accumulator, identical to the prototype.
g can be selected to achieve companding.

One of the possibilities: “Analog floating point technique”
(Blumenkrantz ‘95).



Mapping between x and w (four values of Q)
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e gdecreases by a factor of 2 whenever w increases beyond
a predetermined level, and vice versa. (Blumenkrantz ‘95)

 monotonically increasing x, but a limited value of w.



Switched-capacitor implementation

When g doesn’t change, same as a conventional
accumulator.

A set of comparators are used to detect overflow (>V,.,)
or underflow (< 0.5-V,,,,) of the state variable.

A state machine used to “remember” the current value
of g.

An array of capacitors used at the input and the output
to alter the gains as desired.



Switched-capacitor implementation
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Remarks

e As the number of segments increases:
— Larger signals can be handled.
— Input / output capacitor spread increases.
— Practical limit ~ 3-4 values of g.

« With 4 segments:
— Can handle a 8 X larger signal than a linear filter without distortion.

— Output noise: same as in the linear case (reduces to a conventional
filter for small signals).

— Has 64 X larger dynamic range (= P,,../ Pni,) than the linear filter.

— Uses ~ 8 X larger bias current (op-amp loading) in the worst case
[1 8 X larger power drawn from the supply.

— A conventional filter would use 64 X larger bias current and 64 X
larger capacitor.
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Simulation: 6™ order low-pass filter
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Stays away from the noise-prone low-voltage regions.




2. Use a piecewise linear compression

Mapping between x and w
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« The slope decreases by a factor of 2 in successive
segments, but the mapping is continuous.

 Input, output blocks similar to the previous case. ”



Comparison
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Conclusions

 Two possible techniques for implementing switched-
capacitor companding filters are discussed.

 The increase in the dynamic range for a given power
consumption Is estimated.

« Companding can overcome the tradeoff between the
dynamic-range and the power consumption that is
present in linear switched capacitor filters.
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Switched-capacitor implementation
e |nput / output gain values: switch capacitors in/out
e updating term:

—g[n] = g[n-1]

(B+F)Wn+1] =BMWn]-ALg[n+1u[n+]1]

— g[n] = 2g[n-1]

(B+F)Wn+1] =2BMWn]-Ag[n+1u[n+1]

— g[n] = 0.5g[n-1]
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Switched-capacitor implementation
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Result

conventional companding
output maximum =V, e output maximum =8V,
output minimum = N e output minimum = N
load = C + (B+F)||A  load: C/g[n]+B +
capacitance: (B+F)I|A
A+B+C+F e capacitance:
power = P 15A + 3B + 15C+F
dynamic Range: DR * power=38-P
(DR / P) e dynamic Range: 64:-DR

8- (DR / P)
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Gain switching - cont’'d...

e Outputrisesto 8V, !

max*
— Incorporate an 8x attenuator in the expandor (1/g[n])

 Input should also be limited to V.,
— Apply 8x smaller input, increase the input capacitors 8x

This does not alter the dynamic range
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