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ABSTRACT

We consider resource allocation in the uplink of a cellular system where the base station

has one or more channel resources it can allocate to several users. The base station

requires channel quality and queue length information to achieve an efficient channel

resource allocation. Unlike channel quality, queue length information resides privately

with users and users are assumed to be strategic. In this work, an efficient uplink resource

allocation is achieved while making users report true queue size information. For this,

the problem is formulated as a mechanism design problem where users are the agents

and base station the social planner. To make the users report true values, payments in

terms of money are extracted from them. Since the payments cause loss in overall utility

of users we attempt to minimize the payments in our mechanism.

We design two mechanisms to efficiently allocate the channel resource, which is di-

visible, to users while minimizing the loss in utility due to payments. The users have

concave valuation functions parameterized by a scalar value and report only those scalar

values. We design mechanisms in the Groves class, which are allocatively efficient, strat-

egy proof but not budget balanced by assuming that valuation functions are known to

the social planner. Mechanisms which are almost budget balanced are obtained without

sacrificing the desirable property of individual rationality. The mechanisms proposed

are characterized by linear rebate functions included in payments. First, the proposed

worst-case optimal mechanism minimizes the worst ratio of budget surplus to efficient

surplus. Next, an optimal-in-expectation mechanism that minimizes the ratio of expected
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budget surplus to expected efficient surplus is also proposed and compared with the worst-

case optimal mechanism. Both the mechanisms are designed in a convex optimization

framework. Numerical solutions for the coefficients of linear rebate function, worst-case

efficiency loss and expected efficiency loss are obtained. In the special case of indivisible

goods, the mechanisms fall back to those proposed by Moulin, by Guo & Conitzer and by

Gujar & Narahari. Extension of the proposed mechanisms to the more realistic scenario

where the valuation functions are private to agents is also analyzed. Issues in designing

more competitive but inefficient allocation mechanisms and mechanisms without money

as payment are also discussed.
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CHAPTER 1

Introduction

In many applications especially involving distributed systems, resource allocation depends

on private information held by the end systems or users. There are several recent works

which focussed on situations where these end users are strategic (see [1], [2] and [3]).

Strategic users may misrepresent their private information so as to maximize their own

utility even if at the expense of aggregate system utility [4]. In many practical applications

like spectrum allocation, public good allocation, network resource allocation etc., the

resource is shared by many users, i.e., it is divisible. An efficient allocation of a perfectly

divisible resource to a number of strategic users is considered here.

1.1 Strategic behavior of users in uplink of a cellular

system

We consider resource allocation in the uplink of a cellular system shown in Figure 1.1

which is a multiple access channel (MAC). In a cell, the base station has one channel

resource it can allocate to the users. The channel resource can be frequency or time

shared between the users, and thus, it can be considered as perfectly divisible. The

resource allocation depends mainly on two parameters [5]. One parameter is the channel

quality between the users and the base station. This information will be obtained by base

station using the pilot symbols sent from the users. Another parameter is the number of

packets waiting to be served in the queue of the users. This residual queue size is known



Channel 
Resource
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Figure 1.1: Uplink of a Cellular System

only to the individual users and should be reported by them to the base station [6]. A

user having more residual packets in the queue, values the channel resource more. Thus,

each user has an incentive to report higher queue sizes, so that it will get a higher share of

the resource, to shed more packets. Here, the users are assumed to be strategic, and thus,

interested only in their utility rather than overall system utility. In this scenario, the aim

is to achieve efficient uplink channel resource allocation while making users report true

queue size information. The theory of mechanism design is concerned with obtaining

outcomes that meet a certain system level goal, despite the fact that individuals will

pursue only their self-objectives. It contains a social planner who collects reported values

from agents, knows (or assumes) value functions of agents, and allocates the available

resources. Therefore, the problem above is equivalent to solving a mechanism design

problem where users are the agents and base station the social planner.

Here, an efficient or socially optimal allocation of the resource is to be achieved. For

this, mechanisms require the users to report true private values. To make the users
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report true values, payments in terms of money or the resource to be allocated itself, are

extracted from them. In the quasi-linear environment considered here, the utility of an

agent is the value obtained from allocation minus the payment. Hence, the payments

causes loss in overall utility of users. Here, we assume that information about shape

of value function of users, which is required for allocation and calculation of payments,

is common knowledge. Therefore, the users need to report only a real value. In this

work, an efficient allocation of divisible resource is done in a distributed system based on

true scalar value reported by the end users while minimizing loss in overall utility due

to payments. The solution obtained for a general scenario, will also solve the problem in

the uplink of a cellular system, which motivated this work.

1.2 Mechanism design

Mechanism design has a setting where a social planner faces the problem of aggregating

the reported values of strategic multiple agents into a collective system level outcome

when the actual values are private to agents. It is a sub branch of game theory where, the

rules of the induced game in the mechanism, are designed to achieve a socially desirable

outcome. Thus, mechanism design can be viewed alternatively as reverse engineering of

games. Recently, widespread interest is found in using mechanism design for modeling,

analyzing and solving problems in network resource allocation and network economics

which are decentralized in nature (see [1],[6] and [7] ).

An allocatively efficient mechanism does efficient or socially optimal allocation of the

resource. While doing this, it is to be ensured that the allocation is based on true private

information reported by the agents. If in a mechanism, the agents are incentivised such

that it is the dominant strategy of every agent to reveal true private information, then
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the mechanism is Dominant Strategy Incentive Compatible (DSIC) or strategy-proof.

One way used in mechanism design to make the agents to reveal true private information

is to incentivise them with payments. However, the payments causes loss in overall

utility of agents. Therefore, in applications where there is no owner of the resource who

will collect payments as revenue, and the users or systems involved wanted to efficiently

allocate resource among themselves, the payments are undesirable. A mechanism is

budget balanced (BB) if the net payment from agents to social planner or budget surplus

is zero. Thus, in situations considered here, like the resource allocation problem in the

previous section, ideally we would like to efficiently allocate the resource to users using

true values reported by them while making the loss in utility due to payments zero.

1.3 Budget balancing problem

Groves mechanisms [8] are the only allocatively efficient and strategy-proof mechanisms

in quasi linear environment. However, they are not budget balanced. In fact, the Vickrey-

Clarke-Groves (VCG) mechanism (see [9] and [10]), a member of Groves class of mecha-

nisms, maximizes the total payments from the agents to the social planner. The Green-

Laffont impossibility theorem [11] says that there is no mechanism in a quasi-linear

environment that is strategy-proof, achieves allocative efficiency, and is budget balanced.

An incentive compatible mechanism gives appropriate incentive to users for eliciting

truth from them. These mechanisms require a commodity for which agents have ex-

tremely large demand known as ’numeraire commodity ’ to incentivise them. Agents are

charged in terms of this numeraire commodity for their consumption of original resource

to be allocated, such that their overall utility is maximized when they report true infor-

mation. In pricing schemes, a common way is to model money as a numeraire commodity
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[7]. In this work, we impose payments in terms of money and try to minimize the loss

in overall utility of agents caused by these payments. However, in these schemes, where

money is used as a numeraire commodity, we require the prices to be updated at the rate

of change in network topology. Price and Javidi [6] take another approach and use mech-

anisms in the context where the numeraire commodity is the downlink rates, for eliciting

true uplink queue information in uplink of a cellular system. They model that there is

higher demand of downlink rate over uplink in most communication systems, and come

up with this approach. However, this approach causes a reduction in allocated downlink

rates from the optimal point. In Section 6, we discuss issues related to implementing

payment in terms of uplink channel resource itself.

1.4 Related work and review

In [5], optimal resource allocation is obtained in a communication system when complete

channel and queue information are available. Recently, with the emergence of more

and more distributed systems, resource allocation problems arise, where the users are

strategic. Widespread interest is found in using game theory and mechanism design to

solve these problems (see [2],[3] and [6] ). In [6], efficient uplink rate allocation is achieved

in the presence of strategic users with private uplink queue information. The payments

are derived in terms of downlink rates.

A large literature in mechanism design has focussed on the impossibility result of

Green & Laffont [11]. The d’Aspremont-Gérard-Varet (d’AGVA) [12] mechanism achieves

allocatve efficiency and budget balance, but implements a Bayesian-Nash equilibrium.

Kalagnanam [13] obtains budget balance by sacrificing allocative efficiency and DSIC

properties in the context of generalized Vickrey auction where there are several buyers
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and sellers. Budget balanced but allocatively inefficient mechanisms where obtained by

Faltings [14] for randomly generated social choice problems.

Guo & Conitzer [15] proposed almost budget balanced mechanisms for a setting where,

there are m homogeneous indivisible goods to be allocated to n agents having unit de-

mand, where m < n. A redistribution function was proposed which essentially redis-

tribute back the VCG payments to agents. They maximized the worst-case (minimum)

rebate redistribution fraction relative to the VCG payments and obtains an almost bud-

get balanced mechanism. The worst case optimal mechanism was designed subject to

the constraint that the resulting mechanism is feasible and agents are voluntary partici-

pating. The conditions on possible deterministic rebate functions for mechanisms in the

Groves class, with properties anonymity and DSIC, were proposed by them. They used

linear rebate function and proved the optimality of the linear rebate function among all

possible rebate functions for Groves class of mechanism in the setting they considered.

Moulin [16] independent of Guo & Conitzer [15] proposed mechanisms within the

Groves class for the same setting. A worst case optimal mechanism was proposed in the

sense that it minimizes the worst (maximum) ratio of budget surplus (sum of payments)

to efficient surplus (sum of valuations). The mechanism was designed subject to the same

constraints and obtained the same linear rebate function as Guo & Conitzer [15]. Gujar &

Narahari [18] proposed a mechanism for allocation of m heterogeneous indivisible goods

to n agents again with unit demand where m < n. An agent reports only a scalar value

and a scaling based correlated valuation vector of size 1×m is created from it. They also

proposed a linear redistribution mechanism for this setting and proved it is worst case

optimal among all the Groves redistribution mechanisms which are feasible, voluntary

participating and anonymous.
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Guo & Conitzer [17] proposed a different redistribution mechanism that maximizes

the average rebate redistributions. Once again the redistribution for an agent was linear

in the reported values of all other agents.

We extend the linear redistribution mechanisms proposed by Moulin [16] and Guo &

Conitzer [15] to the case when the resource is perfectly divisible. The valuation function

of an agent, which is assumed to be known to the social planner, is any concave function

parameterized by a scalar value. The agents report only the scalar values. Our generalized

mechanisms reduce to those proposed by Moulin, Guo & Conitzer, and Gujar & Narahari

in the corresponding special settings.

The assumption that the valuation function is known to the central planner is often

unrealistic in practical distributed systems like the Internet. Reporting the entire valua-

tion function, which is infinite dimensional, is a considerable communication burden to

the system (see Johari & Tsitsiklis [19]). If the allocation mechanism is based only on

reported real values in quasi-linear environment, then dominant strategy implementation

is not possible and the central planner should rely on Nash equilibria played by agents.

Sanghavi & Hajek [20] focused on one-dimensional real-valued bids as payment by agents,

and studied the Nash equilibrium implementation. Kelly, Maulloo & Tan [21] proposed a

mechanism where the central planner creates surrogates for the valuation function from

the one-dimensional bids. The allocation and payment are derived using these surrogate

valuation functions. They consider a network resource allocation problem where agents

are price taking, i.e., agents sees a fixed price set by network. Johari & Tsitsiklis [4]

consider strategic agents, where agents are aware of how price is influenced by their bid,

in the Kelly setting and established a worst case efficiency at Nash equilibrium. Yang

& Hajek [22] proposed a VCG-Kelly mechanism by combining the one-dimensional bid

idea of Kelly et al. with the VCG mechanism for the network rate allocation problem.
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They achieve socially optimal allocation at a unique Nash Equilibrium Point (NEP).

NEP is shown to be globally stable through a dynamic algorithm. Johari & Tsitsiklis

[19] analyzed the more general convex environment, proposed a scalar strategy VCG

(SSVCG) mechanism. Necessary and sufficient conditions for the existence of an efficient

Nash equilibrium were obtained. Under further assumptions on the constraint set, they

established that all NEPs are socially optimal.

Guo & Conitzer in a subsequent work in [23] proposed mechanisms outside the Groves

class. They showed that better competitive ratios can be achieved by allowing inefficient

allocation. One strongly budget balanced method with an inefficient allocation partitions

goods and agents into two groups, allocates group-wise, and redistributes payments from

one group as rebates to the other group. Another such method burns a part of the goods.

1.5 Contributions of the thesis

1. We formulated the problem of efficient resource allocation in uplink of a cellular

system in the presence of strategic users as a mechanism design problem. To solve

this problem we proposed mechanisms in the Groves class, which are AE, DSIC

and are almost budget balanced, for allocation of a single divisible resource to a

number of agents. The valuation function of all the agents are taken to be a general

concave function which is parameterized by the scalar values reported by them. A

convex optimization framework is used to design all the proposed mechanisms.

2. Two mechanisms are proposed in the divisible good setting, one is worst case op-

timal and the other one is optimal-in-expectation. The proposed mechanisms are

essentially redistribution mechanisms where a rebate function in payments redis-
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tributes the VCG payment back to agents. Both the proposed mechanisms use

linear redistribution functions.

(a) The proposed worst-case optimal mechanism minimizes the worst ratio of bud-

get surplus to efficient surplus for allocation of a perfectly divisible resource.

(b) The proposed Optimal-in-expectation mechanism minimizes the ratio of ex-

pected budget surplus to expected efficient surplus for divisible resource allo-

cation.

In the special setting of allocation of several indivisible homogeneous goods to

multiple agents with unit demand, the mechanisms proposed here falls back to

optimal mechanisms proposed by Moulin [16] and Guo & Conitzer [15]. Gujar &

Narahari [18] proposed mechanism for allocation of m heterogeneous goods to n

agents when the valuations of an agent to the goods have scaling based correlation.

With an additional constraint on possible allocations their mechanism fits to our

framework in the special setting.

3. In many practical applications, the assumption that the valuation function is known

to the central planner does not hold. The mechanisms proposed by us can be ex-

tended to this setting by using the surrogate valuation function constructed from

the reported scalar values and an almost budget balanced and efficient Nash im-

plementation can be obtained.
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CHAPTER 2

Mechanism Design for Resource Allocation

In resource allocation perspective, mechanism design is used as a mathematical tool to

model, analyze and solve decentralized problems. The mechanism design setting for

resource allocation in a quasi-linear environment is described in the following section.

2.1 The setting

There is a social planner and n agents, {1, 2, . . . , n} = N , carrying private information

or preferences {θ1, θ2, . . . , θn} about a resource, with each θi ∈ Θi, a compact subset

of R+. Agents make a collective choice from O which is outcome set. Agent i receives

an allocation of resource ai that will depend on the entire preference profile θ of size

n × 1. Let a be the allocation vector of size n × 1 and let A be the set of all possible

allocations. Let θ−i ∈ Θ−i denote the preference vector with zero in the ith position of θ.

An allocation vector obtained by considering θ−i is denoted a−i ∈ A−i. An agent obtains

a valuation vi(ai; θi), depending on her bid and the allocation received. Here, we assume

that the shape of valuation function is known to the social planner. So each agent reports

only her preference. An agent makes a payment pi to the social planner depending on

entire preference profile θ. Payment from agents towards the social planner are taken to

be positive. The outcome set O = {a, p}, where p is the payment vector of all the agents.

Agents have utility ui which denotes the payoff the agents derive from the allocation

given their preferences, and considering payments. In a quasi-linear environment, the



valuation and payments in the utility expression of an agent are related linearly, i.e,

ui(θ) = vi(ai; θi)− pi(θ).

There is a common prior distribution of agent’s preferences Φ ∈ ∆Θ, where Θ = Θ1 ×

Θ2× .......×Θn. An individual belief function is derived from Φ for each agent, given her

preference. The key assumptions in mechanism design are rationality and intelligence of

participating agents. The rationality assumption makes an agent to strategise only for its

own objectives. An agent is intelligent if she can make inference about the game induced

in the mechanism that a game theorist can make by knowing everything a game theorist

knows. Φ,Θ1,Θ2 . . .ΘN and u1(.), u2(.) . . . uN(.) are assumed to be common knowledge.

2.2 Properties of mechanisms

Some properties of mechanisms in quasi-linear environment are the following.

1. Allocative Efficiency (AE) - An efficient (or) optimal allocation a∗(θ) maximizes

total value of all the agents.

a∗(θ) = arg max
a∈A

∑
i∈N

vi(ai, θi).

A mechanism is allocatively efficient if the allocation of the resource to agents is

efficient.

2. Dominant Strategy Incentive Compatible (DSIC) - The mechanism is DSIC if it

incentivise agents such that truth revelation becomes dominant strategy of all the

agents.
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3. Budget Balance (BB)- If the net payments from agents towards the social planner

is zero then the mechanism is said to be BB i.e.

∑
i∈N

pi(θ) = 0.

If there is a positive net payment from agents to the social planner (budget surplus)

then the mechanism is said to be Weak Budget Balanced (WBB) or Feasible (F).

This means that no external subsidy of money or resource is required to sustain

the mechanism.

4. Individual Rationality (or) Voluntary Participation (VP): This property ensures

that the utility of all agents should be greater than or equal to the utility they

would get by dropping out of the mechanism. The utility that agents get by not

participating in the mechanism is usually taken to be zero. Thus for VP,

ui(θ) ≥ 0, ∀i ∈ N, ∀ θ. (2.1)

2.3 Groves mechanisms

In quasi-linear environment, the payment of each agent in Groves mechanisms [8] is such

that the resulting mechanism becomes allocatively efficient and DSIC. The payment of

ith agent is given by

pi(θ) = hi(θ−i)−
∑
j 6=i

vj(a
∗
j(θ), θj)

where hi : Θ−i → R is any arbitrary function. Note that, depending on values given

by hi(θ−i) the budget balance of the mechanism changes.
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In the celebrated Vickrey-Clarke-Groves (VCG) mechanism which is a member of

Groves class(see [9] and [10]), hi(θ−i) is set as

hi(θ−i) =
∑
j 6=i

vj(a
∗
−i,j(θ−i), θj)

where

a∗−i(θ−i) = arg max
a−i∈A−i

∑
j 6=i

vj(a−i,j, θj),

and a−i,j is the jth component of a−i. a
∗
−i(θ−i) is the efficient allocation when ith agent is

not considered for allocation. The VCG payment for an agent is the difference the agent

makes to the aggregate value of other agents by participating in the mechanism.

2.4 Redistribution mechanisms for divisible resource

allocation

Consider a perfectly divisible good to be allocated to agents {1, 2, . . . , n} = N . Since we

consider mechanisms only within the class of Groves mechanisms, which are DSIC, we

may assume that all agents report their true preferences.1 Thus, agents reports scalar

bids {θ1, θ2, . . . , θn} with each θi ∈ Θi. The valuation functions considered is assumed to

satisfy following assumption.

Assumption 1. The valuation function vi(·, θi) that maps ai 7→ vi(ai; θi) is concave,

nondecreasing in [0,∞), differentiable in (0,∞), and satisfies vi(ai, 0) = 0.

Let V be set of functions that satisfy Assumption 1. We focus our attention on mech-

anisms that are allocative efficient, DSIC, and budget balanced to the extend possible.

1In Section 6 we discuss mechanisms outside this class.

13



Groves class of mechanisms are the only efficient allocation mechanisms that are DSIC

in quasi-linear environment. To obtain a mechanism which is more budget balanced in

Groves class, a rebate (or) redistribution was introduced by Moulin in [16] in the pay-

ment of VCG mechanism. A rebate function determines the redistributions back to the

agents of a portion of the VCG payments. The choice of these rebates should be such

that the DSIC property of the mechanism is preserved. Moreover, the mechanism should

be anonymous, i.e., two agents with identical bids should get identical rebates. The con-

dition for obtaining an anonymous and DSIC rebate function is given in the following

theorem.

Theorem 1. Suppose that agents bid scalar values and that the scalar parameterized value

functions satisfy Assumption 1. Then, any mechanism with deterministic and anonymous

redistributions is DSIC if and only if the rebate function can be written as

ri = f(θ1, θ2, . . . , θi−1, θi+1, . . . , θn)

for some f with arguments satisfying θ1 ≥ θ2 ≥ . . . ≥ θi−1 ≥ θi+1 ≥ . . . ≥ θn.

Proof. The proof is identical to that in Guo & Conitzer [15].

The payment for the new mechanism with rebates, one that remains within the Groves

class of mechanisms, is given by

pi(θ) =
∑
j 6=i

vj(a
∗
−i,j(θ−i), θj)−

∑
j 6=i

vj(a
∗
j(θ), θj)− ri(θ−i). (2.2)

The rebate function in Theorem 1 should preserve all the desirable properties of the VCG

14



mechanism. These are the following.

1) Feasibility (F) : As given in previous section this property ensures that there is a

net payment (budget surplus) from the agents to the mechanism:

∑
i∈N

pi(θ) ≥ 0, ∀ θ. (2.3)

Substitution of equation (2.2) in equation (2.3) yields

∑
i∈N

∑
j 6=i

vj(a
∗
−i,j(θ−i), θj)− (n− 1)

∑
i∈N

vi(a
∗
i (θ), θi)−

∑
i∈N

ri(θ−i) ≥ 0, ∀ θ,

or, equivalently,

∑
i∈N

ri(θ−i) ≤
∑
i∈N

∑
j 6=i

vj(a
∗
−i,j(θ−i), θj)− (n− 1)

∑
i∈N

vi(a
∗
i (θ), θi)

=: pV CG(θ), ∀ θ, (2.4)

where pV CG(θ) is the total VCG payment by all the agents.

2) Voluntary Participation (VP): From 2.1,

ui(θ) = vi(a
∗
i (θ), θi)− pi(θ) ≥ 0, ∀i ∈ N, ∀ θ. (2.5)

Substitution of equation (2.2) in equation (2.5) yields

∑
j∈N

vj(a
∗
j(θ), θj)−

∑
j 6=i

vj(a
∗
−i,j(θ−i), θj) + ri(θ−i) ≥ 0, ∀i ∈ N, ∀ θ,
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or, equivalently,

ri(θ−i) ≥
∑
j 6=i

vj(a
∗
−i,j(θ−i), θj)−

∑
j∈N

vj(a
∗
j(θ), θj)

=: ni(θ), ∀ i ∈ N, ∀ θ. (2.6)

Adding all the n constraints in equation (2.6) and using equation (2.4), we get

pV CG(θ)−
∑
i∈N

vi(a
∗
i (θ), θi) ≤

∑
i∈N

ri(θ−i) ≤ pV CG(θ), ∀ θ.

We shall consider the case of a single divisible good allocated to a number of agents.

The only assumption is that the valuation function satisfies Assumption 1. The Moulin

[16] and Guo & Conitzer [15] mechanisms are for allocation of m homogeneous indivisible

goods to n agents, each demanding a unit good, where m ≤ n. This fits within our

framework if we divide the single good into m equal parts with m ≤ n and take the piece-

wise linear valuation function vi(ai, θi) = θi min{ai, 1/m}, i.e., each agent’s valuation

increases linearly, but saturates after reaching the threshold 1/m. The Gujar & Narahari

[18] mechanism is for allocation of m heterogeneous indivisible goods to n agents where

valuations of an agent to goods have scalar based correlation. This mechanism also fits

into our framework when we divide the good into m unequal parts, take the valuation

function to be vi(ai, θi) = θiai, and impose the allocation constraint that each agent gets

at most one of the unequal parts. Thus, our proposed generalizations in the next section

fall back to those of Moulin [16], Guo & Conitzer [15], and Gujar & Narahari [18], in the

appropriate special settings.
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CHAPTER 3

Almost Budget Balanced Linear Redistribution

Mechanisms

The redistribution function can take any form as specified in Theorem 1. A linear form

of redistribution function was proposed by Moulin [16] and by Guo & Conitzer [15]. The

latter authors showed that for the worst-case problem, linear redistribution mechanism

is optimal among all Groves mechanisms that are feasible and individually rational. We

too shall focus on a linear redistribution function. The rebate for the ith agent is given

by

ri(θ−i) = c0 + c1θ1 + . . .+ ci−1θi−1 + ciθi+1 + . . .+ cn−1θn

where θ1 ≥ θ2 ≥ . . . ≥ θn. Consequently, we have

∑
i∈N

ri(θ−i) = nc0 +
n−1∑
i=1

ci(iθi+1 + (n− i)θi). (3.1)

After substitution of equation (3.1) in equations (2.4) and (2.6), constraints F and VP

in the linear redistribution case become

(F) nc0 +
n−1∑
i=1

ci(iθi+1 + (n− i)θi) ≤ pV CG(θ), ∀ θ,

(VP) c0 +
i−1∑
j=1

cjθj +
n−1∑
j=i

cjθj+1 ≥ ni(θ), ∀ θ, ∀i ∈ N.

Let ek = (1, 1, . . . , 1, 0, 0, . . . , 0) with k 1s. Setting θ = e0, we get c0 = 0 from F and VP

constraints. Setting θ = e1, we get pV CG(θ) = 0 and ni(θ) = 0 for any i ≥ 2. Therefore,



using constraint F, we get (n− 1)c1 ≤ 0. On the other hand, using constraint VP, we get

r2(θ−2) = c1 ≥ 0, yielding c1 = 0. Furthermore,

Lemma 1. The following system of inequalities are equivalent.

(a) ri(θ−i) ≥ ni(θ), ∀ θ, ∀ i ∈ N.

(b)
k∑
i=2

ci ≥ 0, k = 2, 3, . . . , n− 1.

Proof. (a) ⇒ (b): The definition of ni(θ) in the right-hand side of equation (2.6) yields

ni(θ) =
∑

j∈N−{i}

vj(a
∗
−i,j(θ−i), θj)−

n∑
j=1

vj(a
∗
j(θ), θj) ≤ 0, (3.2)

because a∗−i(θ−i) is an inefficient allocation in comparison to a∗(θ) when all the n agents

are active.

Consider θ = ek for k = 2, 3, . . . , n − 1. The rebates for these bids, i.e., after substi-

tution in (3.1), are

rk+1(θ−(k+1)) =
k∑
i=2

ci.

Moreover,

nk+1(θ) =
∑

j∈N−{k+1}

vj(a
∗
−(k+1),j(θ−(k+1)), θj)−

n∑
j=1

vj(a
∗
j(θ), θj)

=
k∑
j=1

vj(a
∗
−(k+1),j(θ−(k+1)), θj)−

k∑
j=1

vj(a
∗
j(θ), θj)

= 0,

because vj(aj, 0) = 0 for j ≥ k + 1, and therefore

a∗−(k+1)(θ−(k+1)) = a∗(θ)
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as a consequence of the fact that θ−(k+1) = θ = ek. Substitution of these in the VP

constraint yields
∑k

i=2
ci ≥ 0 for k = 2, 3, . . . , n− 1.

(b) ⇒ (a): From Lemma 1 proved by Guo & Conitzer [15], if
∑k

i=2
ci ≥ 0 for all

k = 2, 3, . . . , n− 1 then

c2θ2 + . . .+ ci−1θi−1 + ciθi+1 + . . .+ cn−1θn ≥ 0

for all θ1 ≥ θ2 ≥ θ3 ≥ . . . ≥ θn. Consequently, ri(θ−i) ≥ 0 for all i ∈ N and the reverse

implication follows from equation (3.2). This proves the lemma.

3.1 Worst-case optimal (WCO) mechanism

Moulin [16] proposed a mechanism that minimizes the worst-case efficiency loss. We

shall now describe this objective. Let the efficient surplus be

σv(θ) =
∑
i∈N

vi(a
∗(θ), θi).

The worst-case efficiency loss is the maximum ratio of budget surplus to the efficient

surplus over all possible θ, i.e.,

L(n) = max
θ

∑
i
pi(θ)

σv(θ)
. (3.3)

Moulin [16] minimized this objective function L(n) subject to F and VP constraints,

but under the homogeneous goods setting. We shall now generalize this to the perfectly

divisible case with the linear redistribution constraint, i.e., we will solve
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min
c2,...,cn−1

max
θ

pV CG(θ)−
n−1∑
i=2

ci(iθi+1 + (n− i)θi)

σv(θ)
(3.4)

subject to

1.
n−1∑
i=2

ci(iθi+1 + (n− i)θi) ≤ pV CG(θ), ∀ θ,

2.
k∑
i=2

ci ≥ 0, ∀ k = 2, 3, . . . , n− 1.

This min-max problem can be rewritten as a minimization problem by adding an

additional constraint:

min
c2,...,cn−1,L(n)

L(n) (3.5)

subject to

1.
n−1∑
i=2

ci(iθi+1 + (n− i)θi) ≤ pV CG(θ), ∀ θ,

2.
k∑
i=2

ci ≥ 0, ∀ k = 2, 3, . . . , n− 1,

3.
n−1∑
i=2

ci(iθi+1 + (n− i)θi) + L(n)σv(θ) ≥ pV CG(θ), ∀ θ.

In constraint 1) of problem (3.5), let C1(θ) be a set of feasible coefficients for a given

value of θ. This defines a half plane, a convex set. Thus the intersection of these half

plane constraints C1 =
⋂
θ C1(θ) is also a convex set. In constraint 3), if C2(θ) is the

set of feasible coefficients for a given θ, then C2 =
⋂
θ C2(θ) is also a convex set, and

C1

⋂
C2, the set of coefficients that satisfy both constraints 1) and 3), is a convex set.

Finally, the n−2 conditions in constraint 2) define a polygon, another convex set, and the
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Figure 3.1: Feasible region of c2 and c3 for number of agents=8 obtained with different
number of uniformly random generated θ’s and ek profiles

minimization problem in (3.5) subject to constraints 1), 2) and 3) is a convex optimization

problem. Let us denote the convex constraint set by C.

In problem (3.5), constraints 1) and 3) are a function of θ ∈ ΘN . What we then

have is a continuum of half-space constraints whose intersections, along with those of

constraint 2), yields the overall convex constraint set C. Guo & Conitzer [15] proved

that the constraints obtained with θ profiles ek = (1, 1, . . . , 1, 0, . . . , 0) having k 1s, for

k = 0, 1, . . . , n, are enough to specify the feasible region in the case of indivisible goods.

We too start with these θ profiles. However, they do not fully characterize the feasible

region for the divisible goods case. (See Figure 3.1 above). Additional constraints were

obtained by sampling random values of θ uniformly on ΘN . This yields an approximation

Ĉ of C. The convex optimization problem is then solved numerically subject to the

approximate constraint that the coefficients lie in Ĉ. More details can be found in section

5.
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The natural question that arises is the goodness of the approximation Ĉ as the number

of random samples increases. In Figure 3.1, the number of agents n = 8, the variables are

c2, c3, . . . , c7 and L(n), and for pictorial depiction, only the c2-c3 region is plotted after

disregarding the constraint on other variables. Figure 3.1 gives a sequence of approxi-

mations to the feasible region for c2 and c3. The coarsest is the one that merely uses

the ek profiles. This region is progressively refined with 500, 5000, and 6000 samples of

θ ∈ [0, 1]n. We observe that there is little difference between the regions for 5000 and

6000 samples.

3.1.1 Mean-field approximation and concentration

Constraints 1) and 3) are those that depend on θ. We now show that the nonlinear terms

pV CG(θ) and σv(θ) concentrate to constants for large n, under uniform sampling, and

also identify a suitable mean-field approximation for intermediate values of n. Under

the large n limit, or under the mean-field approximation, the constraints are linear in θi,

and the convex optimization problem in (3.5) has a relaxation that is a simpler linear

programming problem.

We begin with some motivating simulation results. Figures 3.2 and 3.3 provide the

empirical histogram of σv(θ) and pV CG(θ) as θ is sampled uniformly from [0, 1]N where

we took Θ = [0, 1], vi(θi, ai) = θi log(1 + ai), with the constraint
∑

i∈N ai = 1. The

histograms are approximations of the probability density function (pdf) of the random

variables σv(θ) and pV CG(θ), respectively. The plots show pdfs for n = 5, 20, 50, 200, 500.

A good mean-field approximation should approximate σv(θ) to a constant given by the

location of the peak; similarly for pV CG(θ). Further observe that as n → ∞, the pdfs

indicate that both random variables converge to the constant 1. We now substantiate
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these observations.
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Figure 3.2: Histogram of σv(θ ) for different number of agents
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Figure 3.3: Histogram of pV CG(θ) for different number of agents

Claim 1. Let θi be independent and identically uniformly distributed on Θ = [0, 1]. Let

23



vi(θi, ai) = θi log(1 + ai), with the constraint that
∑

i ai = 1. Then, for all n, the mean-

field approximation for σv is

σv '
n

4

[
−2 log λ(n)− 1 + λ2(n)

]
.

Moreover, lim
n→∞

σv(θ) = 1 almost surely.

Proof. The cumulative distribution function (cdf) for the iid θi is F (x) = x, x ∈ [0, 1].

Given a realization θ = (θ1, θ2, . . . , θn), denote the empirical cdf by F (x; θ). The mean-

field approximation simply sets F (x; θ) to its expected value F (x) for all n and x. The

approximation is accurate as n → ∞ as ascertained by the Glivenko-Cantelli theorem

(see pages 85-108 in [24]):

lim
n→∞

sup
x∈Θ
|F (x; θ)− F (x)| = 0 (almost surely).

For a given realization θ, the solution to

max
∑
i

θi log(1 + ai)

subject to the constraints
∑

i ai = 1 and ai ≥ 0 is given by the optimal allocation

ai(θ) =

[
θi

λ(n, θ)
− 1

]
+

,

where [x]+ = max{x, 0}, and λ(n, θ) is chosen so that

n∑
i=1

[
θi

λ(n, θ)
− 1

]
+

= 1. (3.6)
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When θ is sorted in ascending order, the number of agents that bid values in the interval

(x, x+dx) is, under the mean-field approximation, given by n dx. Under this approxima-

tion, λ(n, θ) = λ(n), i.e., it does not depend on the realization. The constraint in (3.6)

then becomes

∫ 1

0

n dx

[
x

λ(n)
− 1

]
+

=

∫ 1

λ(n)

n dx

[
x

λ(n)
− 1

]
= 1,

which yields the quadratic equation n(1− λ(n))2 = 2λ(n). The only meaningful solution

to this equation is the one in the interval [0, 1], which is λ(n) = 1 + 1−
√

2n+1
n

.

Next,

σv(θ) =
n∑
i=1

θi log(1 + ai(θ))

'
∑
x

n dx x log

(
1 +

[
x

λ(n)
− 1

]
+

)
= n

∫ 1

λ(n)

x dx log

(
x

λ(n)

)
=

n

4

[
−2 log λ(n)− 1 + λ2(n)

]
,

where the summand in the approximate sum is obtained by summing over agents i whose

θi fall in the interval (x, x + dx), which we call bin with index x. The outer summation

is over bin indices x. This approximation is almost surely correct as n→∞ because the

integral is that of a bounded and continuous function. The last equality follows from the

evaluation of the definite integral. After substitution of λ(n) = 1 + 1−
√

2n+1
n

in the last

expression and after taking limits, we obtain that σv → 1 almost surely. This concludes

the proof.

In Table 3.1, we compare the mean-field approximation of σv(θ) with the peaks in
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n σv Peak in Figure 3.2
20 0.8126 0.8185
50 0.8763 0.8822
200 0.9358 0.9326
500 0.9588 0.9599

Table 3.1: Comparing σv(θ) peak occurring points in histograms to the values obtained
from Claim 1

Figure 3.3, for different number of agents. We observe that the mean-field approximation

is quite accurate. We next consider pV CG(θ).

Claim 2. Under the assumptions in Claim 1, the mean-field approximation for pV CG is

pV CG ' n(n− 1)/4
[
−2 log λ(n− 1) + λ2(n− 1)

+2 log λ(n)− λ2(n)
]
,

and lim
n→∞

pV CG(θ) = 1 almost surely.

Proof. We first note that

pV CG(θ) =
∑
i∈N

∑
j 6=i

θj log(1 + a−i,j(θ−i)

− (n− 1)σv(θ). (3.7)

We may write

σv,−i(θ) =
∑
j 6=i

θj log(1 + a−i,j(θ−i)),

so that when n is large, σv,−i takes the value of σv, but with n− 1 agents, i.e.,

σv,−i =
n− 1

4

[
−2 log λ(n− 1)− 1 + λ2(n− 1)

]
, (3.8)
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which will be slightly less than σv for n agents. Substitution of (3.8) into (3.7) yields

pV CG ' n

(
n− 1

4

)[
−2 log λ(n− 1)− 1 + λ2(n− 1)

]
−(n− 1)

(n
4

) [
−2 log λ(n)− 1 + λ2(n)

]
,

which simplifies to the given expression for the mean-field approximation for pV CG. A

straightforward calculation of the limit as n→∞ proves the last assertion.

In Table 3.2, the mean-field approximation of pV CG(θ) in Claim 2 is compared with

the peak location of the histogram, for different number of agents. We remark that this

approximation is remarkably accurate even for n = 20.

n pV CG Peak in Figure 3.3
20 0.7269 0.7162
50 0.8182 0.8233
200 0.9048 0.9021
500 0.9387 0.9371

Table 3.2: Comparing pV CG(θ) peak in histogram to the values obtained from Claim 2

From Claims 1 and 2, we can conclude that for large n, randomly (uniformly) chosen

values of θ will result in nearly constant values of pV CG(θ) and σv(θ), so that each θi

appears as linear coefficients in the constraints for optimization problem in (3.5). It

can be shown using Lemma 1 proved by Guo & Conitzer [15] that these result in linear

constraints on c2, c3, · · · , cn−1, L(n). Additional to these constraints, linear constraints on

c2, c3, · · · , cn−1, L(n) obtained from ek profiles are also included, and we have relaxation

of problem in (3.5) to a simpler linear program. Of course, implementation of this simpler

solution on a specific realization may either violate the F constraint or the solution may

not be worst case optimal, hence the term relaxation; see Chapter 5. However, the

(Lebesgue) measure of the set of profiles for which violation occurs vanishes as n→∞.
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3.2 Optimal-in-expectation (OIE) Mechanism

In some scenarios, the worst-case θ profiles may not occur very often. One may wish to

minimize the efficiency loss in an expected sense. Thus, we design another mechanism in

the class of Groves mechanisms which is optimal in expectation. The prior distribution

over the agents’ preferences are assumed to be known and the objective is to minimize

the expected efficiency loss given by

E

[
pV CG(θ)−

n∑
i=1

ri(θ−i)

]

E

[∑
i∈S

vi(a
∗
i (θ), θi)

] , (3.9)

subject to the same constraints (F) and (VP) as in the worst-case problem. By using the

same form of linear rebate function as proposed above, the objective function becomes

(with variables c2, · · · , cn−1)

E [pV CG(θ)]− E

[
N−1∑
i=2

ci(iθi+1 + (N − i)θi)

]
E [σv(θ)]

. (3.10)

Given prior distributions, the quantities E[θi], E[σv(θ)] and E[pV CG(θ)] are constants.

Thus the problem becomes

max
c2,...,cn−1

n−1∑
i=2

ci(iE[θi+1] + (n− i)E[θi]), (3.11)

subject to

1.
n−1∑
i=2

ci(iθi+1 + (n− i)θi) ≤ pV CG(θ), ∀ θ,
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2.
k∑
i=2

ci ≥ 0, ∀ k = 2, 3, . . . , n− 1.

In the convex optimization problem (3.11), constraint 1) is the same as in the worst-

case problem. As done for that problem, an approximate feasible region can be obtained

via sampling. The problem can then be solved numerically to obtain the optimal linear

rebate function coefficients. Simulation results are discussed in Chapter 5.
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CHAPTER 4

Scalar Strategy, Efficient and Almost Budget

Balanced Mechanisms

We now consider the case when the valuations functions are private information of the

agents. In the case of divisible goods, the valuation function of agents is infinitely dimen-

sional. Therefore, mechanisms for allocation of divisible goods, based only on scalar bids

from agents, are of interest in many practical applications. Each agent reports a scalar

value that is used to choose a surrogate valuation function from a single parameter fam-

ily of valuation functions as in [19]. As the true valuation functions are unknown to the

social planner, dominant strategy implementation is not possible. Instead, an efficient

Nash equilibrium implementation, that is almost budget balanced, can be achieved.

Let Vi(ai) be the valuation for agent i when ai is allocated, where Vi : [0,∞) → R

is concave, strictly increasing, and differentiable on (0,∞). An efficient allocation is a

solution to the following problem:

max
a∈A

∑
i∈N

Vi(ai) (4.1)

where A is a compact and convex set. Let the efficient allocation be av.

Each agent sends a one-dimensional bid θi to the social planner. From the reported

bids, the central planner constructs a surrogate valuation function vsi (ai, θi), where vsi (·, ·)

is as follows [19]:



(i) for every θ > 0, vsi (·, θ) is strictly concave, strictly increasing, continuous, and

differentiable in (0,∞),

(ii) for every γ ∈ (0,∞) and a ≥ 0, there exists a θ > 0 such that vs
′
i (a, θ) = γ, where

vs
′
i (a, θ) is the derivative of vsi (a, θ) with respect to a.

The allocation and payment are calculated according to VCG mechanism, but using

the surrogate valuation functions. These mechanisms are generally referred to as scalar

strategy VCG (SSVCG) mechanisms [19]. A special case is the VCG-Kelly mechanism

introduced in [22] where vsi (ai, θi) = θifi(ai) for agent i, and the fi’s are strictly increasing,

concave, and twice differentiable over (0,∞). In our mechanism, we include a rebate

function as in Chapter 3 to obtain an almost budget balanced mechanism.

Let us represent the optimal allocation using surrogate valuation functions by

as = arg max
a∈A

∑
i∈N

vsi (ai, θi),

where the dependence of as on θ is understood and suppressed. The payment of ith agent

after rebate is denoted as

psi (v
s, as) =

∑
j 6=i

vsj (a
s
−i, θj)−

∑
j 6=i

vsj (a
s, θj)− ri(θ−i)

= hi(θ−i)−
∑
j 6=i

vsj (a
s, θj)

where

as−i = arg max
a−i∈A−i

∑
j∈N,j 6=i

vsj (aj, θj).
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The actual utility obtained by agent i is

ui(θi, θ−i) = Vi(a
s
i )− psi (vs, as)

= Vi(a
s
i ) +

∑
j 6=i

vsj (a
s
j , θj)− hi(θ−i).

Finally, the bid vector θNE is a Nash equilibrium if and only if

ui(θ
NE
i , θNE−i ) ≥ ui(θi, θ

NE
−i ), ∀ θi, ∀ i ∈ N.

Johari & Tsitsiklis [19, Lem. 2] showed that, for any SSVCG mechanism, the bid

vector θ is a Nash equilibrium if and only if the corresponding as, which implicitly

depends on θ, satisfies

as ∈ arg max
a∈A

Vi(ai) +
∑
j 6=i

vsj (aj, θj) ∀ i ∈ N.

Indeed, this result holds even for our proposed mechanism with rebates because even

when the hi(·) includes rebates it remains independent of the value reported by agent i.

Further, [19, Cor. 3] states the existence of an efficient Nash equilibrium determined as

follows. Agent i chooses θi such that vs
′
i (avi , θi) = V ′i (a

v
i ), i.e., each agents chooses her

bid so that the declared marginal utility equals the true marginal utility. The resulting

allocation satisfies as = av. Therefore, the resulting θ is an efficient Nash equilibrium

point. Thus, by using the rebate functions proposed in Chapter 3, we will obtain an

almost budget balanced and efficient Nash equilibrium point.
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CHAPTER 5

Simulation Setup and Results

5.1 Simulation setup

Simulation are done for allocation of a single perfectly divisible good to a number of

agents each having the same valuation function vi = θi log(1 + ai). The set A is defined

by the set of all allocation vectors that satisfy
∑

i
ai = 1. The number of agents are var-

ied from 3 to 50. The worst-case efficiency loss (L(n)) and coefficients c2, c3, . . . , cn−1 are

obtained by solving the optimization problem numerically over the approximate feasible

region obtained using 5000 random generated θ’s and ek profiles. For the optimal-in-

expectation mechanism, the feasibility region is obtained in an analogous fashion with

the modified objective function. Since θ is uniformly distributed on ΘN and then sub-

sequently ordered, the ordered quantities satisfy E[θi] = n−i+1
n+1

, i = 1, 2, . . . , N . The

coefficients c2, c3, . . . , cn−1 are obtained by solving the optimization problem on the ap-

proximate feasible region. Efficiency losses for 200,000 θ profiles are calculated under

these coefficients. The expected efficiency loss is obtained by taking the sample mean.

The worst efficiency loss for optimal-in-expectation mechanism is obtained by calculating

the efficiency losses for the ek profiles and 200,000 uniformly sampled θ profiles followed

by an identification of the worst among them. After obtaining the optimal coefficients for

both cases no constraint violations were observed by testing for 200,000 random generated

θ profiles which shows closeness of the approximate feasible region to actual one.



5.2 Simulation results
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Figure 5.1: Worst-case efficiency loss of worst-case optimal, optimal-in-expectation and
VCG mechanisms
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Figure 5.2: Expected efficiency loss of optimal-in-expectation, worst-case optimal and
VCG mechanisms

34



In Figure 5.1, the worst-case optimal mechanism is compared with mean-field ap-

proximation mechanism which is explained in in Section 3.1.1, VCG mechanism and

optimal-in-expectation mechanism for worst-case efficiency loss. It is observed that as

number of agents increases the worst-case efficiency loss reduces for the worst-case op-

timal mechanism. On the other hand, the worst-case efficiency loss converges to 1 for

the VCG mechanism. As expected, the optimal-in-expectation performs poorly in the

worst-case sense when compared with worst-case optimal mechanism, especially for large

number of agents. It can be observed that with mean-field approximation the resulting

mechanism is not worst case optimal. In Figure 5.2, the expected efficiency loss of the

optimal-in-expectation mechanism obtained by uniform sampling of θ and mean-field ap-

proximation is compared with the worst-case optimal and VCG mechanisms. It can be

seen from Figure 5.2 that the optimal-in-expectation mechanism obtained by uniform

sampling of θ outperforms the other three mechanisms in the expectation sense. The ex-

pected efficiency loss of the optimal-in-expectation and worst-case optimal mechanisms

reduce as the number of agents increases. On the other hand, the expected efficiency

loss of the VCG mechanism increases as the number of agents increase. In Figure 5.3,

the fraction of violations of constraints and the worst-case ratio of the subsidy amount,

i.e., total VCG payment minus sum of rebates and total VCG payment, are shown for

the mean-field relaxation of (3.5). The fraction of violations of constraints and the abso-

lute value of worst-case fraction of subsidy are observed to decrease with the number of

agents.
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CHAPTER 6

Discussion

In this chapter, we discuss the possibility of (i) inefficient mechanisms with more redistri-

bution for divisible resource allocation, and (ii) mechanisms without money for divisible

resource allocation.

6.1 Inefficient allocation mechanisms

The Groves class of mechanisms allocates resources efficiently but cannot be made budget

balanced. Guo & Conitzer [23] proposed linear allocation mechanisms outside the Groves

class for homogeneous indivisible goods allocation with unit demand. These mechanisms

achieve better redistribution by inefficient allocation. The new definition of worst effi-

ciency loss used for comparing inefficient mechanisms is

L(n) = max
θ

σv(θ)−
∑n

i=1
vi(a

′
i, θi) +

∑n
i=1

pi(θ)

σv(θ)

where, a′ is the inefficient allocation vector. Note that this quantity will be equal to the

earlier definition of L(n) for the case of allocatively efficient mechanisms. Two ways of

achieving better redistribution by inefficient allocation have been proposed – partitioning

and burning. These methods could be considered for divisible allocation as follows.



6.1.1 Partitioning agents and resource

Partition the agents into groups of size n1 and n− n1. A fraction p (0 ≤ p ≤ 1) part of

the resource is allocated among the n1 agents according to VCG mechanism. Likewise,

remaining 1− p part of the resource is allocated among the other group of n−n1 agents.

The VCG payments are completely transferred between the groups in a predetermined

way. Thus, the mechanism becomes strongly budget balanced. However, there will be an

efficiency loss due to the initial inefficient allocation (partitioning).

6.1.2 Burning a part

Consider a mechanism where 1− p part of the resource is burnt. The remaining part is

optimally allocated to all the n agents. Burning can be considered as a special case of

partitioning where n1 = n. In [23], burning some of the goods among the homogeneous

goods is observed to be better in terms of worst-case efficiency loss in some cases.

We observed from simulations of the above methods in the case of infinitely divisible

resources, that the worst-case efficiency loss did not improve compared to worst-case

optimal and efficient mechanisms proposed in Section 3. The improvement achieved

in [23] seems to depend on the indivisible nature of the goods and the unit demand

requirement. Further analysis of these mechanisms would be interesting, but is outside

the scope of our present work.

6.2 Mechanisms without money

Thus far, we assumed that money is transferred as payments by agents. But, using

money as payments require complex billing mechanism. In certain problems, such as
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the resource allocation problem in the uplink of a multiple access channel, one desires

mechanisms without money transfer where the resource allocation itself is adjusted in lieu

of payments. In such cases, the allocation to the agents after adjusting for payments and

rebates should fall in the feasible allocation set. Thus, there is an additional constraint

in the optimization problem while designing rebates.

Table 6.1: Comparing L(n) of VCG mechanism and Worst Case Optimal (WCO) mech-
anism without money for n = 20

VCG mechanism WCO mechanism
α = 1 0.958 0.919
α = 0.5 0.963 0.955
α = 0 1 1

For simulations we considered α-utility valuation function, i.e.,

vi(ai; θi) =


θi

(1+ai)
(1−α)−1

1−α , if α ≥ 0 and α 6= 1

θi log(1 + ai), if α = 1

and
∑

i ai = 1. The L(n) values for VCG mechanism and Worst case optimal mechanism

without money for n = 20 are given in Table 6.1 above for different values of α. Also, the

expected efficiency loss values for VCG mechanism and Optimal-in-expectation mecha-

nism without money for n = 20 are compared in Table 6.2 above. It is observed that for

all values of α there is not much improvement in efficiency loss from VCG mechanism.

Table 6.2: Comparing Expected efficiency loss of VCG mechanism and Optimal-in-
Expectation (OIE) mechanism without money for n = 20

VCG mechanism OIE mechanism
α = 1 0.879 0.849
α = 0.5 0.92 0.8905
α = 0 0.95 0.9021
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CHAPTER 7

Conclusions

7.1 Conclusions

Efficient resource allocation is achieved in the uplink of a cellular system by making the

users to report true queue information while minimizing the loss due to payments. For

this, we proposed mechanisms for allocation of a single divisible resource to a number

of agents when the agents report only scalar values. We proposed a mechanism in the

class of Groves mechanisms that is almost budget balanced as it minimizes the worst-

case efficiency loss. The proposed mechanism is feasible and has voluntary participation

and anonymity properties. The mechanism is applicable to allocation of divisible or

indivisible goods and simplifies to the mechanism proposed by Moulin [16] and Guo &

Conitzer [15] and Gujar & Narahari [18] for the indivisible goods case in the respective

special settings. A mechanism that is optimal-in-expectation is also proposed by assuming

that the distribution of the preferences are known. All the mechanisms are designed in

a convex optimization framework. The convex optimization problems were numerically

solved to obtain the optimal coefficients of the linear rebate function. The solution

is obtained over an approximate feasible region via sampling of constraints. We also

obtained a mean field approximation of the problems and linear program relaxation of

the problems were solved.

The proposed worst-case optimal and optimal-in-expectation mechanisms are com-

pared with each other and with the VCG mechanism, in both worst-case and optimal-in-



expectation senses. A significant reduction in efficiency loss is obtained for both linear

rebate mechanisms when compared to the VCG mechanism. Also, as number of agents

increases the efficiency loss tends to zero for the proposed mechanisms in the respective

sense.

We also discussed extensions of our proposed mechanisms to a case where the valu-

ation functions are private information to agents. The agents report only scalar values

and surrogate valuation functions are constructed from them (Johari & Tsitsiklis in [19]).

A similar optimization will yield almost budget balanced and efficient Nash equilibrium

implementation for this setting. Mechanisms outside Groves class that are more com-

petitive but inefficient were proposed in [23]. Issues related to their extensions to the

divisible case were also discussed. Issues while implementing mechanisms without money

were also discussed for different possible valuation functions.

7.2 Future work

In this work, we restricted ourselves to linear redistribution mechanisms. We believe

that there can be nonlinear redistribution mechanisms which are more budget balanced

than linear ones for divisible resource allocation. Therefore, investigating possible nonlin-

ear redistribution mechanisms will be an interesting future direction. Another possible

extension is to look for more budget balanced but allocatively inefficient and/or non

strategy proof mechanisms. The design of mechanisms without money[28] that achieve

lower efficiency loss is also a possible area of future research.
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