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Abstract— When channel state information is available at the
transmitter, we can diagonalize a MIMO channel with SVD
transceivers. However, outage of the weaker eigenchannels limits
the performance of such a transceiver. In the current work, we
propose and analytically characterize co-ordinate interleaving of
multi-dimensional symbols over sets of eigenchannels. We show
that in our method, the diversity multiplexing trade-off (DMT)
is determined by the strongest eigenchannel in each set. We
also calculate the optimal (DMT) for different possible sets and
constellation dimensions with rate allocation among the sets.

I. INTRODUCTION

In slow fading delay limited channels, diversity multiplexing
trade-off (DMT) [1] is a good measure of performance for any
multiple antenna (MIMO) transmission scheme at high SNR.
While [1] analyzed the optimum DMT with no channel state
information at the transmitter (CSIT), a variety of methods
have been proposed to improve the DMT with CSIT.

Diagonalizing a MIMO channel with singular value decom-
position (SVD), is a well known technique when CSIT is
available. The bank of parallel channels with channel gains
given by the ordered singular values of the MIMO channel
matrix are commonly known as eigenchannels or eigenmodes.
In [2], multiple data streams are transmitted in parallel on
these eigenchannels in what is called multiple beamforming.
However, the DMT derived in [2] is lower than the DMT in
[1] even with the advantage of CSIT. On account of the scalar
encoding restriction, the method in [2] experiences outage
when any of the eigenchannels in use experiences outage. The
weaker eigenchannels, tend to be in outage more frequently
than the stronger ones. As we increase the spatial multiplexing
gain, the weaker eigenchannels have to be employed and there
is a degradation of diversity compared to [1].

To solve the problem, interleaving the co-ordinates of two-
dimensional QAM symbols across eigenchannels was first
proposed in [3]. Building on [3], in the current work, we divide
the eigenchannels into sets and in each set we interleave the
co-ordinates of multi-dimensional symbols across the different
eigenchannels. Use of rotated multi-dimensional constellations
to exploit signal space diversity was first proposed in [4] and
analyzed in [5]. In our method, the different co-ordinates of the
multi-dimensional symbols drawn from a rotated constellation
pass through the different eigenchannels.

We characterize the symbol error rate with the diversity-
multiplexing trade-off (DMT) [1] and show that with co-
ordinate interleaving, the DMT is determined only by the

statistics of the strongest eigenchannel in the set. Thus, co-
ordinate interleaving is a technique where the weaker channels
are hidden by the presence of a strong channel in the set.
To the end of obtaining the DMT for the technique of co-
ordinate interleaving, we obtain a novel approximation, for
small arguments, to the joint probability distribution of any
subset of the eigenvalues of a Wishart matrix.

With respect to the DMT, our method outperforms all other
methods of beamforming operating under a short term power
and rate constraint. The benefits can be ascribed to signal space
diversity. We effectively employ joint vector coding across
the eigenchannels as opposed to scalar encoding in models
like [2]. When the dimension of the signal space is equal
to the number of eigenchannels and the co-ordinates of the
symbols are interleaved across all the eigenchannels, we get
the best performance and the DMT is simply a straight line
joining the points of maximum diversity and maximum spatial
multiplexing. Noting that the decoding complexity grows with
the dimension of the constellation, we propose appropriate
partitioning of the eigenchannels into sets and optimum rate
allocation across the different sets. Thus, the user can trade
the performance off for decoding complexity by employing
constellations with smaller dimensions. From our results, it
follows that we get the most significant gains in the DMT
at high multiplexing gains i.e. when the spatial degrees of
freedom offered by the MIMO channel are being utilized.

The remainder of the paper is organized as follows. In
section II, we present the system model and the technique
of generalized co-ordinate interleaved spatial multiplexing. In
section III, we analyze the symbol error rate (SER) and outage
probability for our system. We conclude in Section V.

II. SYSTEM MODEL AND COORDINATE INTERLEAVING

Consider a MIMO system with Nt transmit antennas and
Nr receive antennas (Nt × Nr system) where the channel
experiences flat Rayleigh fading and additive white Gaussian
noise. The discrete time baseband input-output relation of the
MIMO channel is,

y = Hs + w, (1)

where s ∈ C
Nt×1 is the complex, information bearing symbol

vector, y ∈ C
Nr×1 is the channel output vector, H = [hij ] ∈

C
Nr×Nt is the channel realization (normalized to unity gain)

and w ∈ C
Nr×1 is the zero mean, circularly symmetric,

complex Gaussian unit variance additive noise. We define
m = max{Nt, Nr}, n = min{Nt, Nr}.
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We assume pefect channel state information at the receiver
and transmitter. The MIMO channel is diagonalized through
SVD as H = UΛVH where U ∈ C

Nr×n and V ∈ C
Nt×n

are unitary matrices and Λ ∈ R
n×n is a diagonal matrix with√

λ� ∈ R
+ as its �th diagonal element representing the �th

eigenchannel. Here
√

λ� denotes the gain of the �th largest
singular value of H.

Our system operates under a short term power constraint
E[s†s] ≤ P . We generalize the scheme in [3] for signifi-
cantly improved performance with arbitrary n using multi-
dimensional QAM constellations, which were first proposed
in [5] as a method of improving throughput at the expense of
decoding complexity. We partition the n eigenchannels into
sets of eigenchannels Q1, Q2, . . . , Qs such that

∑s
i=1 qi = n

where qi = |Qi|, the number of elements in Qi. Depending on
the target data rate, we pick the first L ≤ s sets among {Qi}
and allocate power Pi to each set such that

∑L
i=1 Pi ≤ P .

We then use qi−dimensional co-ordinate interleaved coding
on each set Qi for 1 ≤ i ≤ L.

Let xi = xi
1 + jxi

2 be the codeword on a particular set of
eigenchannels Qi where j =

√−1. We choose xi
k = Mb for

k = 1, 2 where b = (b1, b2, . . . , bqi
)T represents a point from

O, an qi-dimensional QAM constellation and M = [mij ] ∈
R

qi×qi is the rotation matrix applied to the constellation to
get O′ [5]. Let si = ViP

i
xi where Vi contains the right

singular vectors corresponding to the eigenchannels in Qi and
P

i
= diag

(
{√pi

k}k=1,...,qi

)
such that

∑qi

k=1 pi
k ≤ Pi the

power constraint for Qi. Transmit s =
∑L

i=1 si ∈ C
Nt×1.

Multiply the received vector y by UH to obtain the equiv-
alent received signal on the set Qi as

ri = ri
1 + jri

2 =
(
ΛiP

i
xi

1 + w′
1

)
+ j

(
ΛiP

i
xi

2 + w′
2

)
, (2)

where Λi = diag
({√λ�k

}, k = 1, 2, . . . , qi

)
contains the

eigenchannels in Qi and w′
1 = �w′, w′

2 = �w′ rep-
resent the noise vectors. 1. If xi

t = [xi
t1x

i
t2 · · ·xi

tqi
]T and

w′
t = [w′

t1w
′
t2 · · ·w′

tqi
]T , the individual entries of ri

t =
[ri

t1r
i
t2 · · · ri

tqi
]T are given by

ri
tk =

√
λ�j

pi
kxi

tk + w′
tk, (3)

for t = 1, 2. From (3), we see that the coordinates of the multi-
dimensional symbols pass through different eigenchannels.
The maximum-likelihood (ML) detection criterion with perfect
CSI stipulates the minimization of the following metric to
estimate the transmitted symbol x from ri

t

m(x|ri
t, λ�1 , λ�2 , . . . , λ�qi

) =
qi∑

j=1

|ri
tj −

√
λ�j

pi
jxj |2. (4)

It can be seen in (4) that the decoding complexity of the
ML metric increases with qi, the dimension of the signal
set used. We can compute (4) more efficiently through the
universal lattice decoder, commonly known as the sphere

1Multiplication by unitary matrices does not alter the statistics of a noise
vector.

decoder [6]. The sphere decoder was shown to perform close
to ML decoding with low complexity for dimensions of up to
32. As the expected complexity of sphere decoding was shown
to be polynomial (approximately cubic) [7], we note that it is
practically feasible to decode the multi-dimensional symbols
at the receiver.

III. SYMBOL ERROR RATE AND OUTAGE PROBABILITY

In order to capture the asymptotic performance of our sys-
tem, we analyze the DMT derived in [1], where diversity order,
d is given by d ≡ − limP→∞

log Pe(P )
log P , which describes the

rate at which the average error probability, Pe(P ), falls with
P at large P , for a particular target rate, R (P ). Multiplexing
gain is defined as r ≡ limP→∞

R(P )
log P , where r quantifies the

dependence of the target rate on the average power constraint.
If E is the error event, the probability of wrong detection

of xi
t from ri

t are identical for t = 1, 2 and given by

Pr
(
xl → xη(l)

)︸ ︷︷ ︸
Most probable error event

≤ Pr
(E|xi

k = xl

) ≤ ∑
xk∈N (l)

Pr (xl → xk)

︸ ︷︷ ︸
Union Bound

,

(5)
where xη(l) represents the nearest neighbor of xl and N (l)
represents the set of constellation points in the immediate
neighborhood of xl in O′. For any qi-dimensional QAM
constellation, the maximum number of points in the immediate
neighborhood of any point is 2qi, i.e. |N (l)| = 2qi. Therefore∑

xk∈N (l)

Pr (xl → xk) ≤ 2qiPr
(
xl → xη(l)

)
. (6)

Since the upper bound and the lower bound in (5) are different
only by a scaling factor, to calculate the DMT, we need to find
the SNR exponent of the most probable error event, the lower
bound in (5).

We consider Pr (xl → xk) for any k and l in the immediate
neighborhood of each other which is given by

Pr (xl → xk) = E

[
Q

( |ul − uk|
2

)]
, (7)

where u{l,k} = ΛiP
i
x{l,k} represents the received constel-

lation point x{l,k} = [x{l,k}1, x{l,k}2, . . . , x{l,k}qi
]T without

any noise. We have in (7)

|ul − uk| =

⎡
⎣ qi∑

j=1

λ�j
pj (xlj − xkj)

2

⎤
⎦

1
2

. (8)

The power allocated to each set Pi is taken to be P/L.
However, such a choice will not alter the DMT. Scaling the
power by a constant factor, in this case L will not make a
difference when P → ∞2. Let Ri = ri log P be the rate on the
set Qi such that R = r log P = (

∑s
i=1 ri) log P where R is

the target transmission rate. For a transmission rate of ri log P ,

2Noting that Pi ≤ P for each i, we could upper-bound the performance
by taking Pi = P . However the DMT is unchanged from what is obtained
here.



there should be a total of P ri possible points in the combined
constellation of xi

1 and xi
2. As xi

1 and xi
2 are symmetric, there

should be P
ri
2 points in the constellation of either xi

1 or xi
2.

Additionally, since xi
1 and xi

2 are unit energy qi-dimensional
constellations, the spacing between points is of the order of
P

ri
2qi in each dimension. If xl and xk are dlk

j symbols apart
in the jth dimension, the distance between them in the jth

dimension will be of the order of dlk
j P

− ri
2qi . We note that

as O′ is a rotation of the constellation O with M , dlk
j 
= 0

for l 
= k, i.e. no two points have the same jth coordinate.
Therefore, we have in (9),

|ul − uk| =

⎡
⎣ qi∑

j=1

λ�j
pj

(
dlk

j

)2
P

− ri
qi

⎤
⎦

1
2

(9)

To analyze the symbol error rate in (7) using (9), we would
need the joint distribution of the ordered eigenvalues in Qi.
We define the central Wishart matrix as W = HH† when
Nr < Nt and W = H†H when Nr > Nt.

Theorem 3.1 (Joint Distribution of Eigenvalues): An
approximation to the joint distribution of eigenvalues of
a central Wishart matrix λ

�q

�1 = {λ�1 , λ�2 , . . . , λ�q
} where

�1 < �2 < . . . < �q and �j ∈ {1, 2, 3, . . . , n}, valid for small
arguments3 is given by

g
(
λ

�q

�1

)
=C

(
q−1∏
i=1

λχi−1
�i

)
λ

χ′
q−1

�q

+ o

((
q−1∏
i=1

λχi−1+εi

�i

)
λ

χ′
q−1+εq

�q

)
, (10)

where C is the normalizing factor,

χi = (�i+1 − �i) (m + n − �i − �i+1 + 2) , (11)

χ′
q = (m − �q + 1) (n − �q + 1) , (12)

and εi is a positive constant for i = 1, 2, . . . , q.
Proof: We refer to [8, Lemma 2] for the approximate

distribution of a single ordered eigenvalue valid for small
arguments. The same result has been proved rigorously in [9].
For the sake of brevity, we present only a heuristic argument
on the lines of [8]. A rigorous proof is possible with a non-
trivial generalization of steps in [9, Appendix II].

The required joint distribution is exactly given by

g
(
λ

�q

�1

)
=
∫
D+

�1

∫
D×

�1,�2

∫
D×

�2,�3

· · ·
∫
D−

�q

f ({λ}i=1,2,...,n)

dλ+
�1

dλ×
�1,�2

dλ×
�2,�3

. . . dλ×
�q−1,�q

dλ−
�q

,

where

f(λ1, λ2, . . . , λn) = K−1
m,ne−

∑
i λiΠ

i
λm−n

i Π
i<j

(λi − λj)
2

(13)

3We write a function a(x) as o(x) if limx→0 a(x)/x = 0.

is the complete joint distribution of all the eigenvalues for the
Rayleigh channel. Also

λ+
�1

= {λ1, . . . , λ�1−1}, λ−
�q

= {λ�q+1 , . . . , λn}, (14)

λ×
�i,�i+1

= {λ�i+1, . . . , λ�i+1−1} (15)

and their respective domains

D+
�1

= {λ�1 ≤ λ�1−1 ≤ · · · ≤ λ1 < ∞}, (16)

D−
�q

= {0 < λn ≤ λn−1 ≤ · · · ≤ λ�q+1 ≤ λ�q
}, (17)

D×
�i,�i+1

= {λ�i
≤ λ�i+1 ≤ · · · ≤ λ�i+1−1 ≤ λ�i+1} (18)

for i = 1, 2, . . . , q − 1.
The integration over D+

�1
results in a constant and is not

a function of λ�1 for small λ�1 . We turn to integration over
D×

�i,�i+1
for i = q − 1, q − 2, . . . , 1. As the complete joint

distribution of (13), f(·) → 0, whenever λk → λk+1, we
assume that the eigenvalues are separated widely enough
and approximate (λk − λj)

2 in (13) with λ2
k for all k < j

without loss of accuracy for further calculations. For each
λk ∈ λ×

�i,�i+1
, there are n−k possible factors (λk−λj)2 ≈ λ2

k

along with λm−n
k . Therefore, χi − 1, the exponent of λ�i

is

χi − 1 =
�i+1−1∑
k=�i

{(m − n) + 2(n − k) + 1} − 1

=(�i+1 − �i)(m + n − �i+1 − �i + 2) − 1. (19)

Similar arguments hold for integration over D−
�q

to obtain

χ′
q − 1 = (m − �q + 1)(n − �q + 1) − 1, (20)

which can be checked by substituting �i+1 = n + 1 in (19).
We verify that the marginal distributions obtained from

the joint distribution derived here coincide with results in [8,
Lemma 2] and [9, Theorem 1].

g
(
λ

�q−1

�1

)
=
∫ λ�q−1

λ�q =0

g
(
λ

�q

�1

)
dλ�q

=Cλχ1−1
�1

λχ2−1
�1

, . . . , λ
χq−1+χ′

q−1

�q−1

(a)
=Cλχ1−1

�1
λχ2−1

�1
, . . . , λ

χ′
q−1−1

�q−1
,

where in (a) we make use of a property which is easily verified.

χi−1 + χ′
i − 1 = χ′

i−1 − 1 (21)

for i = 2, . . . , q. Proceeding in the same manner we arrive at
the marginal distribution g (λ�1) = Cλ

χ′
1

�1
which corresponds

to the results in [8, Lemma 2] and [9, Theorem 1].
We now proceed to state the DMT for the set Qi in our

second main result. The proof is supplied in the appendix.
Theorem 3.2 (DMT within a set): The DMT for the aver-

age error probability on the set Qi using qi-dimensional
symbols as given in (2) is

di(ri) = (m − μi + 1)(n − μi + 1)
(

1 − ri

qi

)
, (22)

where μi is the strongest eigenchannel in Qi and qi = |Qi|.



From (22), we see that the DMT for Qi depends only on
the strongest eigenchannel in Qi. Therefore, we can infer
that the effect of the weaker eigenchannels is offset by the
method of co-ordinate interleaving. The best performance can
be expected when we interleave coordinates of n dimensional
symbols across the n eigenchannels, i.e. when we have only
one set. From Theorem 3.2, we see that the DMT for inter-
leaving coordinates across all the eigenchannels is given by
a straight line joining the points corresponding to maximum
diversity (0,mn) and maximum multiplexing gain (n, 0). If
we wish to use constellations with smaller dimensions to
reduce decoding complexity, the following result describes
appropriate partitioning of eigenchannels into sets.

Theorem 3.3 (System DMT): For the co-ordinate inter-
leaved system with the partition of eigenchannels {Qi}s

i=1,
the optimal DMT d∗D(r) is given by a piece-wise linear curve
joining the points

(ρk, (m − μk+1 + 1)(n − μk+1 + 1)) k = 0, 1, 2, . . . , s
(23)

where

ρk =

{
0 k = 0∑k

j=1 qj

(
1 − (m−μk+1+1)(n−μk+1+1)

(m−μj+1)(n−μj+1)

)
k > 0,

(24)
qj = |Qj |, μi is the strongest eigenchannel in Qi for i =
1, 2, . . . , s and μs+1 = n + 1. For each r > 0, the rates
allocated to {Qi} are given by

ri =

{
qi

(
1 − d∗

D(r)
(m−μi+1)(n−μi+1)

)
1 ≤ i ≤ minρL≥r L

0 i > minρL≥r L.
(25)

Proof: The problem of finding the optimum DMT
reduces to an optimization problem of allocating rates to the
different sets Qi depending on their relative strengths. Let
μs+1 = n + 1 and

c(k) = (m − μk + 1)(n − μk + 1) k = 1, 2, . . . , s (26)

D(L, r) = c(i)
(
1 − ri

qi

)
i = 1, 2, . . . , L L ≤ s. (27)

We have to find the optimum DMT d∗D(r) = maxL D(L, r)
subject to the constraint

∑L
i=1 ri = r. Solving the problem,

we get the transition points mentioned in Theorem 3.3 when
D(i, ρi) = D(i+1, ρi) for i = 1, 2, . . . , s−1. At the transition
point (ρk, c(k + 1)), the diversity d∗D(r) is equal to the best
diversity of the strongest eigenchannel in set Qk+1.

Remark 3.1: From Theorem 3.3, it is clear that the optimum
patitioning of eigenchannels to {Qi} would imply μi = i i.e.
allocate the s largest eigenvalues separately to the s sets.

Remark 3.2: We turn the tradeoff around and consider the
rate-diversity trade-off r∗D(d) for our method and r∗M (d) for
multiple beamforming [2]. Let us also assume the partitioning
as in Remark 3.1, i.e. μi = i for i = 1, 2, . . . , s. In Theorem
3.3, if we substitute equal qi = q, it is not difficult to show
that at points where diversity d(r) = (m − i + 1)(n − i + 1)
for i = 1, 2, . . . , s, the ratio of the rates r∗D(d)/r∗M (d) =
q, the constellation dimension employed. Even with a QAM
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Fig. 1. DMT Comparison for a 8 × 10 system

constellation employed in our system we get a gain of 2 over
multiple beamforming. As we increase the dimension of the
signal space, we can extract corresponding gains in spatial
multiplexing at a given reliability.

IV. REPRESENTATIVE RESULTS FOR A 8 × 10 MIMO
SYSTEM

In Figure 1, we plot the DMT for our scheme applied to
an 8×10 system with different partitions and compare it with
other curves. In the (8)−code, we use 8-dimensional codes to
interleave across all 8 eigenchannels. In the (4, 4)−code we
have two sets Q1 and Q2 containing λ1 and λ2 respectively.
Irrespective of how λ3, . . . , λ8 are allocated to Q1 and Q2

the DMT remains unchanged as explained before. However,
the coding gains might depend on the exact partition used.
Similarly, in the (2, 2, 2, 2)−code, we have Q1, Q2, Q3 and
Q4 containing λ1, λ1, λ3 and λ4 respectively.

When compared with multiple beamforming [2], we notice
substantial gains with all partitions. In contrast to [2] where
the method suffers from the outage of the weaker eigen-
channels, in our method, we harness signal space diversity
through interleaving symbols across the eigenchannels. At
high multiplexing gains, the performances of the (8)−code
and (4, 4)−code are quite close and significantly higher than
other curves. In a practical system, we might opt for the
lower complexity (4, 4)−code and still get substantial gains in
performance. We also plot in Figure 1 the fundamental DMT’s
for space-only coding (coherence length T = 1) and space
time coding (coherence length T ≥ m + n − 1) with CSIR
only [1]. Since our method is essentially a space-only code,
comparison with the former would be appropriate.

V. CONCLUSION

In the current work, we proposed a general model for co-
ordinate interleaved spatial multiplexing that seeks to leverage
the strong eigenchannels of a MIMO system to offset the
weaker ones. Substantial gains over other SVD transmission



schemes were observed particularly in the high multiplexing
gain regime. We also note that there is considerable flexibility
in our scheme with respect to the choice of the constellation
dimensions. In future work, we would add temporal power
[10] and rate control [11] to our model. We would also
examine the effect of imperfect channel state information on
the performance of our method.

APPENDIX

Proof: [of Theorem 3.2] Let the joint distribution
g
(
λ

�qi

�1

)
derived in Theorem 3.1, be valid for λ�1 < Δ for

some Δ > 0. With a slight abuse of notation from Theorem
3.1, we denote the domain of integration 0 ≤ λ�qi

≤ λ�qi−1 ≤
. . . λ�1 and B1 ≤ λ�1 ≤ B2 by DB2

B1
.

Pr (xl → xk) =
∫

DΔ
0

[
Q

( |ul − uk|
2

)]
g
(
λ

�qi

�1

)
dλ

�qi

�1︸ ︷︷ ︸
(I)

+
∫

D∞
Δ

[
Q

( |ul − uk|
2

)]
f
(
λ

�qi

�1

)
dλ

�qi

�1︸ ︷︷ ︸
(II)

.

Terms (II) is o

(
1

P
(1− ri

qi
)mn

)
using the bound Q(x) ≤ e−

x2
2 .

Using the result Q(x) = 1
π

∫ π
2

0
e−

x2

2 sin2 t dt and changing the
order of integration, term (I) is expanded as∫

DΔ
0

[
Q

( |ul − uk|
2

)]
g
(
λ

�qi

�1

)
dλ

�qi

�1
(28)

=
1
π

∫ π
2

0

∫
DΔ

0

e

⎡
⎢⎣−P

(− ri
qi

) ∑qi
j=1 pjλ�j (dlk

j )2

sin2 t

⎤
⎥⎦
g
(
λ

�qi

�1

)
dλ

�qi

�1︸ ︷︷ ︸
I

dt.

We obtain the lower bound for the DMT of the system,
di,L(ri) by initially assuming uniform power allocation for
{pk}qi

i=1, pk = 1
qi

Pi = P
Lqi

in (28). We concentrate on the

inner integral I . In the expression for g
(
λ

�qi

�1

)
, we omit

the o

((∏qi−1
i=1 λχi−1+εi

�i

)
λ

χ′
qi
−1+εqi

�qi

)
term as it does not

influence the calculation of DMT and write I as

=C

∫ Δ

0

∫ λ�1

0

· · ·
∫ λ�qi−1

0

qi−1∏
j=1

e

⎡
⎢⎣−P

(1− ri
qi

)
λ�j (dlk

j )2

Lqi sin2 t

⎤
⎥⎦
λ

χj−1
�j

e

⎡
⎢⎣−P

(1− ri
qi

)
λ�qi

(dlk
qi)

2

Lqi sin2 t

⎤
⎥⎦
λ

χ′
qi
−1

�qi
dλ�qi

· · · dλ�2dλ�1 .

(29)

We notice that the inner integrals are separable and lower
incomplete gamma functions which are of the form∫ λ�i

0

e−Γλ�i+1 λa−1
�i+1

dλ�i+1 =
(a − 1)!

Γa

[
1 − e−Γλ�i

a−1∑
v=0

λv
�i

v!

]
,

(30)

where Γ ∝ P
(1− ri

Lqi
)(dlk

i+1)
2

qi sin2 t
and a is an integer. We now begin

with the innermost integral in (29) and proceed outwards, tak-
ing i = qi−1, qi−2, . . . , 1 in (30). After a few manipulations
and utilizing the property in (21), we get

I = C ′

⎛
⎝P

(
1− ri

qi

)
sin2 t

⎞
⎠−χ′

1

+ o

⎛
⎜⎝
⎛
⎝P

(
1− ri

qi

)
sin2 t

⎞
⎠−(χ′

1+ε′)
⎞
⎟⎠ ,

(31)
where C ′ is a new constant and ε′ > 0. Substituting I from
(31) back in (28), we have

Pr (xl → xk) = C ′′
(

P

(
1− ri

qi

))−χ′
1

+o

(
P

−
(
1− ri

qi

)
(χ′

1+ε′)
)

,

(32)
where C ′′ = C′

π

∫ π
2

0
(sin t)2χ′

1 dt is yet another constant. From
(32) and (5), we have the lower bound to the DMT as

di,L(ri) = (m − �1 + 1)(n − �1 + 1)
(

1 − ri

qi

)
. (33)

We now obtain an upper bound for the DMT of the system,
di,U (ri) by setting choosing {pk}qi

i=1 to be pk = Pi = P
qi

.
Since any choice

∑qi

k=1 pk ≤ Pi, the DMT obtained with pk

is an upper bound to the performance. Noting that pk is only
a scaled version of pk, we see that the upper bound for the
DMT coincides with the lower bound di,U (ri) = di,L(ri).
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