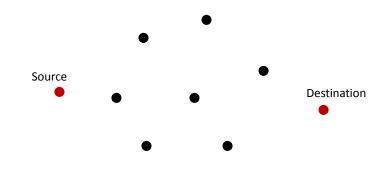
Information Flow in Wireless Networks

Srikrishna Bhashyam

Department of Electrical Engineering Indian Institute of Technology Madras


National Conference on Communications IIT Kharagpur

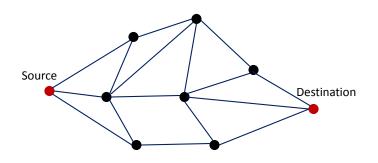
3 Feb 2012

Acknowledgements

- Andrew Thangaraj
- Bama Muthuramalingam

Information Flow Problem

- Wireless network of nodes
- Single source, single or multiple destinations
- Information rate maximization
- Per node power constraint


Outline

- Wired Networks
 - Max-flow min-cut theorem
 - Network coding
- Wireless Networks
 - Broadcast and interference
 - Interference Avoidance Approach
 - Information-theoretic Approach
 - ★ Cut-Set Bounds
 - ★ Flow optimization
 - ★ Approximate capacity
- Summary

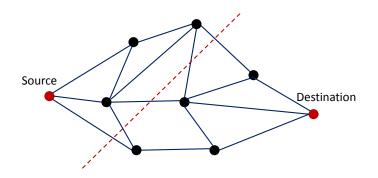
Wired Networks

Single Source - Single Destination

Wired Network as a Graph

- Graph G = (V, E), V: set of nodes (vertices), E: set of links (edges)
- Each edge (i,j) associated with a capacity C_{ij}

Flow

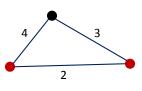

- Given G, assign $\{x_{ij}\}$ such that:
- $x_{ij} \geq 0$
- Rate constraints: $x_{ij} \leq C_{ij} \quad \forall i, j$
- Flow constraints:

$$\sum_{i} x_{ji} - \sum_{i} x_{ij} = \begin{cases} f & j = s \text{ (Source)} \\ -f & j = t \text{ (Destination)} \end{cases} \forall j$$
0 else.

- f is the value of the flow from s to t
- Maximum flow can be found using linear programming

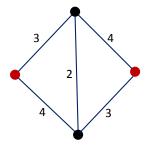
Cut and Cut Capacity

Cut with respect to s and t


- Partitions V into S and S^c with $s \in S$, $t \in S^c$
- Cut Capacity (sum of capacities of edges from S to S^c):

$$C(S,S^c) = \sum_{i \in S, j \in S^c} C_{ij}$$

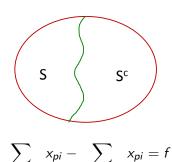
Max-Flow Min-Cut Theorem


For a given G, the maximum value of flow from s to t is equal to the minimum value of the capacities of all cuts in G that separate s from t.

Examples

Cut capacities: 6, 5

Min-cut: 5



Cut capacities: 7, 7, 8, 10

Min-cut: 7

Proof Outline (Directed Graph)¹

Part 1: Show that $f \leq C(S, S^c)$ for any cut

Since
$$\sum_{p \in S, i \in S} x_{pi} - \sum_{i \in S, p \in S} x_{pi} = 0, \sum_{p \in S, i \in S^c} x_{pi} - \sum_{i \in S, p \in S} x_{pi} = f$$

$$\Rightarrow f \le \sum_{p \in S, i \in S^c} x_{pi} \le \sum_{p \in S, i \in S^c} C_{pi} = C(S, S^c)$$

N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall India, 1974.
An undirected graph can be converted into a directed graph by replacing each undirected edge by two directed edges. < ○ ○ ○</p>

Proof Outline

Part 2: There exists a flow $f_0 = C(S_0, S_0^c)$ for some cut

- Step 1: Consider flow pattern corresponding to maximum flow
- Step 2: Define S_0 as:
 - $ightharpoonup s \in S_0$
 - ▶ If $i \in S_0$ and either $x_{ij} < C_{ji}$ or $x_{ji} > 0$, then $j \in S_0$.
- Step 3: Show $t \in S_0^c$
- Step 4: Show $f_0 = C(S_0, S_0^c)$

Wired Networks

Single Source - Multiple Destinations

Multicast and Network Coding²

- Source s, L destinations t_1, t_2, \dots, t_L
- All destinations want the same information
- Let f_k denote the maximum flow possible from s to t_k
- Maximum multicast rate

$$f = \min_{k} f_{k}$$

 Routing is not enough, network coding is required

²R. Ahlswede, N. Cai, S-Y. R. Li, R. W. Yeung, "Network Information Flow," IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204-1216, July 2000.

Multicast Flow Optimization

$$\max_{\{x_{ij}^{(k)}\}} f$$

Flow constraints:

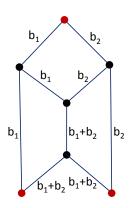
$$\sum_{i} x_{ji}^{(k)} - \sum_{i} x_{ij}^{(k)} = \begin{cases} f & j = s \text{ (Source)} \\ -f & j = t \text{ (Destination)} \end{cases} \forall k, j$$
0 else.

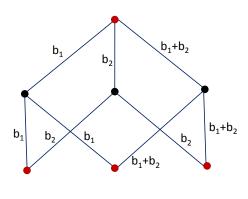
Rate constraints:

$$x_{ij}^{(k)} \leq C_{ij} \quad \forall k, i, j$$

• $x_{ij}^{(k)}$: Flow in (i,j) towards destination t_k

Network Codes

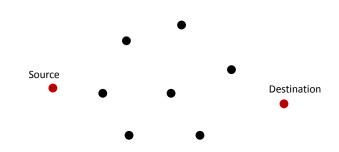

- Random α -codes³
- Linear codes⁴
- Random linear network codes⁵
- Network codes exist for every feasible flow solution⁶


³R. Ahlswede, N. Cai, S-Y. R. Li, R. W. Yeung, "Network Information Flow," IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204-1216, July 2000.

⁴S-Y. Li, R. Yeung, N. Cai, "Linear Network Coding," IEEE Transactions on Information Theory, vol. 49, no. 2, pp. 371-381, 2003.

⁵T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, B. Leong "A Random Linear Network Coding Approach to Multicast," IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413-4430, 2006.

Examples

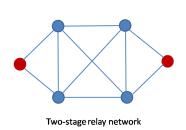


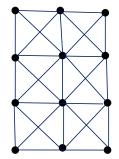
Links with unit capacity

Wireless Networks

Single Source - Single/Multiple Destinations

Wireline Networks vs. Wireless Networks

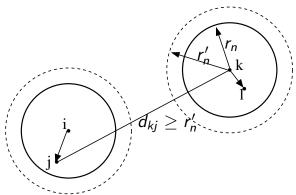

- Wireline networks
 - Links are independent
 - Graph model natural
- Wireless networks
 - ► Single shared resource → Broadcast nature, Interference
 - lacktriangle Links are dependent ightarrow Cross-layer optimization



Wireless Network as a Graph

Many possibilities

- Complete graph: All nodes connected to all others
- Finite transmission range model

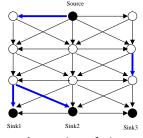


Wireless Networks

Interference Avoidance Approach

Interference Avoidance Model for Links

- Protocol model to avoid interference between links⁷
 - ▶ Check transmission range: $d_{ij} \le r_n$, $d_{kl} \le r_n$
 - ▶ Check interference range: $d_{kj} \ge r'_n$, $d_{il} \ge r'_n$

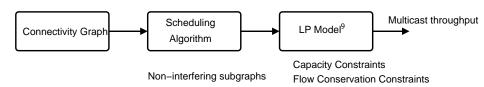


Link activation constraints can be extended for broadcast hyperarcs ⁸

⁷P. Gupta *et al.*, The Capacity of Wireless Networks, IEEE Transactions on Information Theory, Mar. 2000

⁸Park *et al.,* Performance of network coding in adhoc networks, in Proc. of IEEE:MILCOM 2006 🗦 🕟 📲 🤟 🤌 🔍

Interference Avoidance (IA) with Broadcast Hyperarcs



A non-interfering subgraph

- A collection of non-interfering hyperarcs forms a non-interfering subgraph
- All non-interfering subgraphs can be generated using:
 - Conflict graph scheduling^a

 $^{^{\}it a}{\rm Jain}~\it et~\it al$ "Impact of interference on multihop wireless networks," Mobicom 2003

Optimization Model

- A: Set of hyperarcs
- (i, J): Broadcast hyperarc
- $x_{i \, l \, i}^{(k)}$: Flow from i to $j \in J$ using hyperarc (i, J) towards sink t_k
- z_{i i}: Average rate at which packets are injected by i in (i, J)

Scheduling Constraints

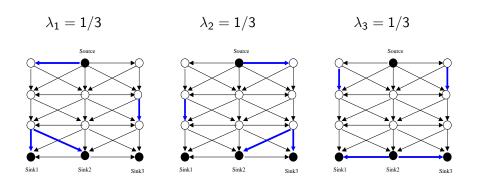
 $^{^9\}mathrm{Lun}$ et al. Performance of network coding in adhoc networks, MILCOM 2006 (\square) Srikrishna Bhashyam (IIT Madras)

Flow Optimization Model: Wireless Networks

$$\max_{\{\lambda_m\},\{z_{iJ}\},\{x_{iJj}^{(k)}\}} f$$

- Scheduling constraints: $\sum_{m} \lambda_{m} \leq 1$
- Rate constraints:

$$\sum_{j \in J} x_{iJj}^{(k)} \le z_{iJ} \quad \forall (i, J) \in \mathcal{A}, k$$
$$z_{iJ} \le \sum_{m} \lambda_m C_m(i, J)$$


Flow constraints:

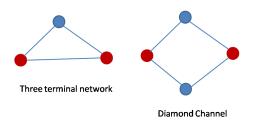
$$\sum_{(i,J)\in\mathcal{A}}\sum_{j\in J}x_{iJj}^{(k)}-\sum_{(j,I)\in\mathcal{A}}\sum_{i\in I}x_{jli}^{(k)}=\left\{\begin{array}{cc}f & i=s \text{ (Source)}\\ -f & i=t \text{ (Destination)}\end{array}\;\forall k,i\right.$$

• $\lambda_m \geq 0$, $x_{iJi}^{(k)} \geq 0$, $z_{iJ} \geq 0$

▶ ◆個 ▶ ◆ 置 ▶ ◆ 置 ▶ ● の Q で

IA Solution for 4 x 3 Grid Network

• f = 2/3 packets per time unit


Wireless Networks

Information-theoretic Approach

Wireless Relay Networks: What is known/unknown?

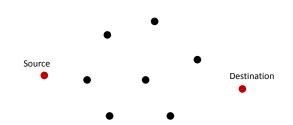
Single source-destination pair Gaussian relay networks

- Capacity unknown for arbitrary topology
- Cut-set upper bound
- Achievable rates for specific protocols and topologies
- Appproximate capacity

Wireless Relaying: Assumptions and Results

Duplex	SNR	Cooperation	Topology
Full	Large	MIMO	Arbitrary, Directed
Half	All	Limited	Restricted
		No MIMO	Arbitrary

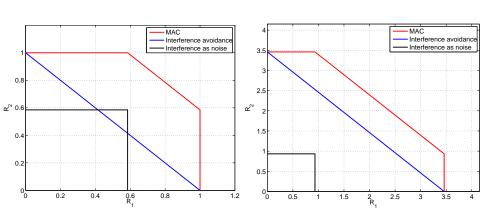
- Both, Large SNR, MIMO, Arbitrary directed¹⁰
 - ► Constant gap to capacity
- Both, Large SNR, MIMO, Arbitrary¹¹
 - Diversity-multiplexing trade-off
- Half duplex, All SNR, Limited, Restricted¹²
 - Rates close to capacity
- Half duplex, All SNR, No MIMO, Restricted¹³
 - Constant gap to capacity


¹⁰ A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, Wireless network information flow: A deterministic approach, IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 1872 1905, April 2011.

¹¹K. Sreeram, P. S. Birenjith, P. V. Kumar, "DMT of multi-hop cooperative networks," IEEE ITW, Cairo, Egypt, Jan. 2010.

¹² W. Chang, S. Chung, and Y. Lee, Capacity bounds for alternating twopath relay channels, in Proc. of the Allerton Conference on Communications. Control and Computing, Monticello, Illinois, USA, Sep. 2007, pp. 11491155.

¹³H. Bagheri, A. Motahari, and A. Khandani, On the capacity of the halfduplex diamond channel, in Proc. of IEEE International Symposium on Information Theory, Austin, USA, June 2010, pp. 649 653:


Relay Networks

- Interference processing/decoding
 - Decode strong interference and cancel
 - Joint decoding of interfering signals
- Processing at the relays
 - More general than decode and forward and network coding
 - ▶ Relay can transmit any encoded function of received signal

Interference Processing

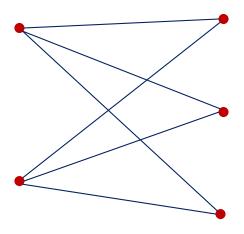
Gaussian Multiple Access Channel



$$P_1 = 0 \text{ dB}, P_2 = 0 \text{ dB}$$

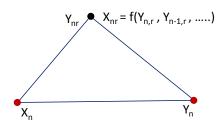
$$P_1 = 10 \text{ dB}, P_2 = 10 \text{ dB}$$

Interference Channel

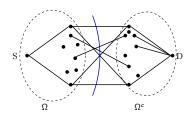


- Two transmit-receive pairs
- Strong interference: Decode interference and cancel¹⁴
- Weak interference: Treat interference as noise¹⁵

¹⁴ A. B. Carleial, A case where interference does not reduce capacity, IEEE Trans. Inform. Theory, vol. IT-21, pp. 569-570, Sept. 1975.


¹⁵ V. Annapureddy and V. Veeravalli, Gaussian interference networks: Sum capacity in the low-interference regime and new outer bounds on the capacity region, IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3032 3050, July 2009.

Interference Networks


2 x 3 Interference Network

Processing at the Relays

- Transmit signal = f(past received signals)
- Link model with an associated rate
 - Decode-and-forward (DF) + Network coding
- Other general models
 - Amplify-and-forward (AF)
 - Compress-and-forward (CF)
 - Quantize-map-and-forward
 - • •

Cut-Set Bound

Full Duplex Network¹⁶

$$R \leq \min_{\Omega} I(X^{\Omega}; Y^{\Omega^c} | X^{\Omega^c}) \text{ for some } p(x_1, x_2, \cdots, x_N)$$

Half Duplex Network ¹⁷

$$R \leq \sup_{\lambda_k} \min_{\Omega} \sum_{k=1}^{\mathscr{M}} \lambda_k I(X_{(k)}^{\Omega}; Y_{(k)}^{\Omega^c} | X_{(k)}^{\Omega^c}) \text{ for some } p(x_1, x_2, \cdots, x_N | k)$$

¹⁶ T. M. Cover, J. A. Thomas, Elements of Information Theory, John Wiley, 2004.

¹⁷ M. Khojestepour, A. Sabharwal, B. Aazhang, "Bounds on achievable rates for general multiterminal networks with practical constraints", IPSN, pp. 146-161, 2003

Cut Capacity Bounds: Gaussian Relay Networks¹⁸

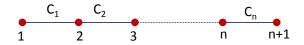
- Based on MIMO capacity
 - Maximize

$$\log \det \left(\mathbf{I} + \mathbf{H} K_X \mathbf{H}^H \right)$$

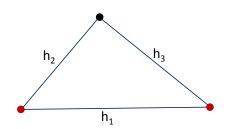
subject to $tr(K_X) \leq N_t P$

- MIMO capacity Water-filling
- Easy to compute MIMO capacity bound

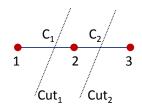
$$\log \det \left(\mathbf{I} + PN_t\mathbf{H}\mathbf{H}^H\right)$$


- Per antenna power constraint
- Same input distribution for a state for all cuts

¹⁸ M. Bama, "Cut-set Bound for Gaussian Relay Networks," Available at http://www.ee.iitm.ac.in/~skrishna/TechRepCUB.pdf.



Examples: Full-duplex Cut-Set Bound

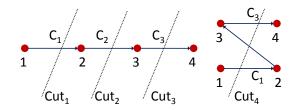

- Linear network (n hops/stages, n+1 nodes)
 - $2^{n-1} \text{ cuts, } C_{FD} = \min_{n} C_{n}$

- 3-node relay network
 - ▶ 2 cuts, $C_{FD} = \min\{C((h_1^2 + h_2^2)P), C((h_1 + h_3)^2P)\}$

Examples: Half-Duplex Cut-Set Bound

State	Cut_1	Cut_2
S ₀ (00)	0	0
S_1 (01)	0	C_2
S ₂ (10)	C_1	0
S ₃ (11)	0	C_2

• Enough to consider S_1 and S_2 $(\lambda_1 + \lambda_2 = 1)$


$$C_{HD} = \max_{\lambda_1, \lambda_2} \min(\lambda_2 C_1, \lambda_1 C_2)$$

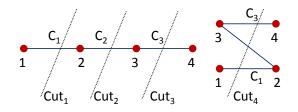
$$\lambda_1 C_2 = \lambda_2 C_1$$

$$\Rightarrow C_{HD} = \frac{C_1 C_2}{C_1 + C_2}$$

• $C_{FD} = \min(C_1, C_2)$

Examples: Half-Duplex Cut-Set Bound

State	Cut ₁	Cut ₂	Cut_3	Cut ₄
	Cati	Cutz	Cuts	Cut4
S_0 (000)	0	0	0	0
S ₁ (001)	0	0	<i>C</i> ₃	<i>C</i> ₃
S ₂ (010)	0	C_2	0	0
S ₃ (011)	0	0	<i>C</i> ₃	<i>C</i> ₃
S ₄ (100)	C_1	0	0	C_1
S ₅ (101)	C_1	0	<i>C</i> ₃	$C_1 + C_3$
S ₆ (110)	0	C_2	0	0
S ₇ (111)	0	0	C_3	<i>C</i> ₃


• Enough to consider S_2 and S_5 $(\lambda_2 + \lambda_5 = 1)$

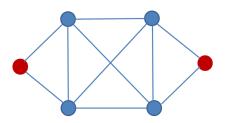
$$\max_{\lambda_2,\lambda_5} \min(\lambda_2 C_2,\lambda_5 C_1,\lambda_5 C_3)$$

•
$$C_{HD} = \min_{n} \frac{C_{n-1}C_n}{C_{n-1}+C_n}$$

•
$$C_{FD} = \min_n C_n$$

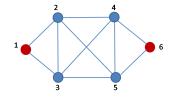
Undirected network with more than 2 stages/hops

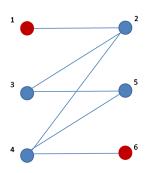
State	Cut_1	Cut ₂	Cut_3	Cut ₄
S ₀ (000)	0	0	0	0
S_1 (001)	0	0	<i>C</i> ₃	<i>C</i> ₃
S ₂ (010)	0	C_2	0	0
S ₃ (011)	0	0	<i>C</i> ₃	<i>C</i> ₃
S ₄ (100)	C_1	0	0	C_1
S ₅ (101)	C_1	0	<i>C</i> ₃	$C_1 + C_3$
S ₆ (110)	0	C_2	0	0
S ₇ (111)	0	0	<i>C</i> ₃	<i>C</i> ₃


- Interference from node 3 to node 2
- Dirty paper coding (DPC) if interference is known non-causally
- Knowing interference not always possible

Wireless Networks

Information-theoretic Approach and Flow Optimization


Our Focus


- Half-duplex
- All SNR
- No MIMO/Limited cooperation
- Restricted, arbitrary
- Decode-and-Forward

Two-stage relay network

States of a Half-Duplex Network

- Each node: Transmit, Receive, or Idle
- Each state is an interference network

Relaying Scheme

- Two components: Scheduling and Coding
- Scheduling of states
 - Which states help in information flow?
 - What is the best time-sharing of these states?
- Coding for a given state
 - Which encoding and decoding scheme should be used?
 - Choice of operating point in capacity region

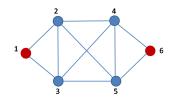
Scheduling: Choice of States

All States

Complexity

Interference Avoidance

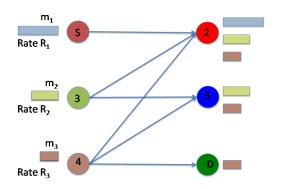
Only one node can transmit at any time


Interference Processing

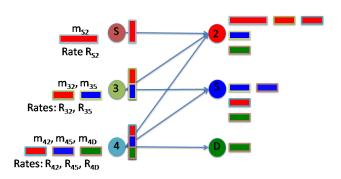
- Source should be in transmit mode
 - Destination should be in receive mode
- Relays should be in both transmit and receive modes
 - Required for information flow
- Atleast two node-disjoint paths required for source to be transmitting in all chosen states

Coding for a State

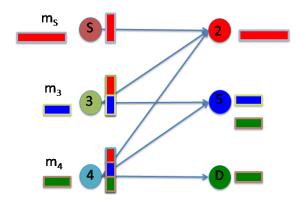
- M × N interference network [Carleial1978]
- Possible message from each transmitter to each subset of receivers
 - ▶ $M(2^N 1)$ possible rates
- M—user Interference channel
 - M possible messages (M rates)
- Achievable rate regions based on
 - Superposition
 - Successive interference cancellation
 - Dirty paper coding


Two-Path Two-State Schedule

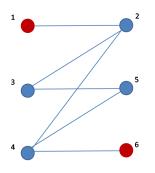
- Shortest (three-hop) paths connecting S and D
 - ▶ Path P1: $S \rightarrow 2 \rightarrow 4 \rightarrow D$
 - ▶ Path P2: $S \rightarrow 3 \rightarrow 5 \rightarrow D$
 - ▶ Path P3: $S \rightarrow 2 \rightarrow 5 \rightarrow D$
 - Path P4: S → 3 → 4 → D.
- Only two pairs of node-disjoint paths: (P1, P2) and (P3, P4).
- States from (P1, P2):
 - ► State S1: Nodes S, 3, 4 transmit, Nodes 2, 5, D receive
 - State S2: Nodes S, 2, 5 transmit, Nodes 3, 4, D receive



Common Broadcast (CB)


- Rate limited by weakest link
- Receivers employ SIC/MAC decoding

Superposition Coding (SC)


- Transmitters send superposed codewords
- Constraints involve power allocation parameters (non-linear)
- Larger rate region than CB

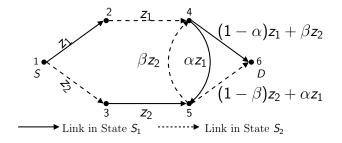
Dirty paper coding (DPC) at the source

- Source: origin for all messages; knows m₃ and m₄
- Source does DPC to eliminate interference at receiver 2
- Can be combined with CB or SC at other transmitters.

Coding for the Two-Stage Relay Example

DPC-SC

- State S1: Nodes S (1), 3, 4 transmit, Nodes 2, 5, D (6) receive
- Node S: Transmit to Node 2 using DPC
- Node 3: Transmit to Node 5
- Node 4: Transmit to Nodes 5 and D using SC


Flow Optimization

Joint optimization problem

maximize Rate subject to

- Scheduling constraints
 - State k is ON for λ_k units of time
 - Total transmission time is one unit
- Rate region constraints
 - appropriate rate region depending on the coding scheme
- Flow constraints
 - ► Total flow in a link $(i,j) = \sum_{k}$ flow in link (i,j) in state k
 - ▶ Outgoing flow from Node i Incoming flow to Node i = Rate, if i = S, -Rate, if i = D,

Two-Stage Relay Flow optimization: DPC-SC

Two-Stage Relay Flow optimization

$$\max_{0 \leq \lambda_1, \lambda_2, \alpha, \beta \leq 1} R = z_1 + z_2,$$

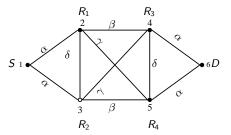
subject to rate constraints

Flow in each link less than average rate

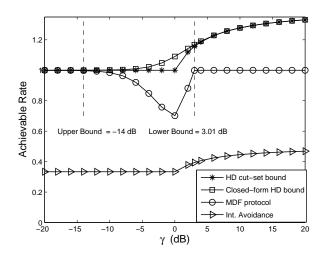
$$\begin{aligned} z_1 &\leq \lambda_1 R_{52}, \quad z_1 \leq \lambda_2 R_{24}, \quad z_2 \leq \lambda_2 R_{53}, \quad z_2 \leq \lambda_1 R_{35}, \\ (1 - \alpha)z_1 + \beta z_2 &\leq \lambda_1 R_{4D}, \quad (1 - \beta)z_2 + \alpha z_2 \leq \lambda_2 R_{5D}, \\ \alpha z_1 &\leq \lambda_1 R_{45}, \quad \beta z_2 \leq \lambda_2 R_{54}, \end{aligned}$$

- Scheduling constraint: $0 \le \lambda_1 + \lambda_2 \le 1$
- Rates chosen according to rate region of interference network

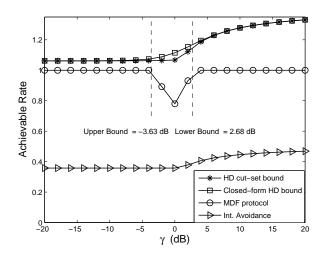
$$(R_{S2}, R_{35}, R_{45}, R_{4D}) \in \mathcal{R}_1, (R_{S3}, R_{24}, R_{54}, R_{5D}) \in \mathcal{R}_2.$$


Numerical Results

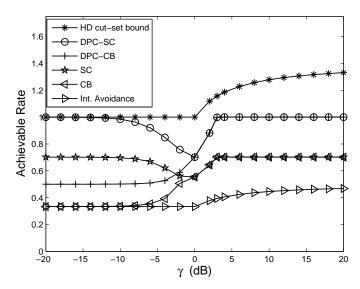
Parameters:


- Tx power, P = 3 units
- Noise variance, $\sigma^2 = 1$
- Variable channel gains

• Case 2:
$$\alpha=\beta=$$
 1.25, $\gamma=\delta$



Numerical Results: Case 1


- Achieves cut-set bound in weak interference regime
- ullet Gap from cut-set bound in strong interference regime ≤ 0.33 bits

Numerical Results: Case 2

- Gap from cut-set bound in weak interference regime ≤ 0.06 bits
- Gap from cut-set bound in strong interference regime ≤ 0.33 bits

Comparison of All Schemes: Case 1

Numerical Results: Multicast

Parameters:

- Tx power, P = 3 units
- Noise variance, $\sigma^2 = 1$
- Variable channel gains

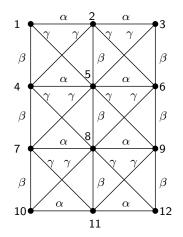
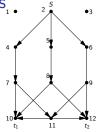
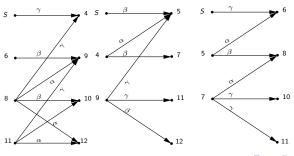
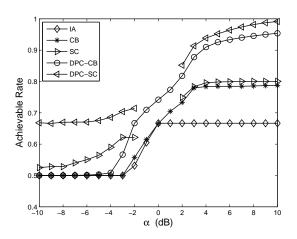




Figure: 4×3 Grid Network.


Information Flow Paths₁.

• Three IP states

Performance in Grid Network, $\beta = 1, \gamma = 1$, vary α

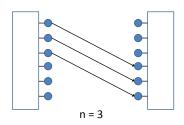
• Six IA states, three IP states

Summary of Optimization Formulation

- Flow optimization with more general physical layer
- States of a half-duplex relay network as interference networks
- Scheduling + Coding components
- Scheduling of states using path heuristic
- Interference processing receivers at the relays
- Strong and weak interference conditions on channel gains
 - Close to cut-set bound

Wireless Networks

Information-theoretic Approach: Approximate Capacity

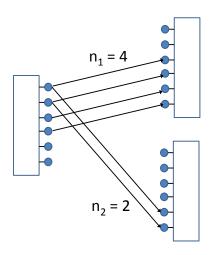

Relay Networks and Approximate Capacity¹⁹

- Achieve rates within a constant gap of cut-set bound
- Gap independent of channel parameters
- Gap not significant at high rate/high SNR
- Deterministic model (approximation)
- Capacity of a deterministic relay network
- Approximate schemes for Gaussian relay networks

¹⁹ A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, Wireless network information flow: A deterministic approach, IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 1872 1905, April 2011.

4 □ → 4

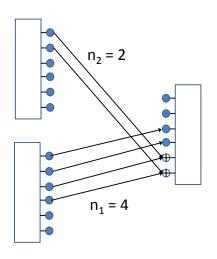
Deterministic Model: Point-to-Point


Signal strength model

$$y = \sqrt{\mathsf{SNR}}x + z, \quad z \sim N(0, 1), \quad E[x^2] \le 1$$
$$y \approx 2^n \sum_{i=1}^n x(i) 2^{-i} + \sum_{i=1}^\infty (x(i+n) + z(i)) 2^{-i}$$

where $n = [0.5 \log SNR]^+$

Most significant n bits received as destination


Deterministic Model: Broadcast

- $R_2 \le n_2$
- $R_1 + R_2 \le n_1$

Deterministic Model: Multiple Access

- $R_2 \le n_2$
- $R_1 + R_2 \le n_1$

Deterministic Model: Summary

- Component-wise within one bit gap for BC and MAC
- Not a finite gap for MIMO
- Models link from transmitter to receiver

- Deterministic model for relay network
- Quantize-map-and-forward strategy
- Finite gap from cut-set bound

Related Results

- Abstract flow model for deterministic relay networks
- Simpler computable schemes (instead of random coding)²⁰ ²¹

21 S. M. S. Yazdi and S. A. Savari, A combinatorial study of linear deterministic relay networks, in Proceedings of Allerton Conference on Communications, Control, and Com- puting, Sep. 2009.

²⁰ M. X. Goemans, S. Iwata, and R. Zenklusen, An algorithmic framework for wireless information flow, in Proceedings of Allerton Conference on Communications, Control, and Computing, Sep. 2009.

Other Constant Gap Achieving Schemes

- Noisy Network Coding²²
 - Vector-quantization of received signal in blocks
- Compress-and-forward²³
 - ► Analog of algebraic flow results in deterministic networks for Gaussian networks

²² S. H. Lim; Y. -H. Kim; A.. El Gamal, and S. -Y. Chung. Noisy Network Coding. IEEE Trans. Inform. Theory, vol. 57, no. 5, pp.31323152, May 2011.

²³ A. Raja and P. Viswanath. Compress-and-Forward Scheme for a Relay Network: Approximate Optimality and Connection to Algebraic Flows Proc. of IEEE ISIT, Aug. 2011.

Multiple Unicast and Polymatroidal Networks²⁴ ²⁵

- Wireless network as an undirected polymatroidal network
- Use results on polymatroidal networks
- Polymatroidal Networks
 - Edge capacity constraints
 - Joint capacity constraints on set of edges that meet a vertex

25 S. Kannan, A. Raja and P. Viswanath. Local Phy + Global Flow: A Layering Principle for Wireless Networks. Proc. of IEEE ISIT. Aug. 2011.

²⁴S. Kannan and P. Viswanath. Multiple-Unicast in Fading Wireless Networks: A Separation Scheme is Approximately Optimal. Proc. of IEEE ISIT, Aug. 2011.

Summary

Summary

- Wired Networks
 - Unicast: Max-flow min-cut theorem
 - Multicast: Network coding
- Wireless Networks
 - ▶ Interference management
 - Interference Avoidance Approach
 - Interference processing
 - ► Flow optimization + Interference processing
 - Approximate capacity + deterministic models
- Issues
 - Centralized scheduling + rate selection
 - Limited topology and channel information