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Abstract—The performance of iterative decoding of Low Den-
sity Parity Check (LDPC) codes over Binary Erasure Channels
can be completely characterized by the study of stopping sets.
Therefore, the burst erasure correction capability of a given
LDPC code can be readily quantified by searching for stopping
sets within consecutive bit nodes. In this work we study the
optimal permutation of the bit nodes that will result in the
maximum possible burst erasure correction capability for a
given LDPC code. Noting that this is essentially a combinatorial
optimization problem that is highly likely to be NP-hard, we
adopt a simulated annealing based approach for finding the
optimal permutation. We present bounds based on stopping sets
that limit the burst erasure correction capability. As part of our
results, we provide interleavers that greatly improve the burst
erasure correction capability of protograph quasi-cyclic LDPC
codes used in the WiMax standard.

I. INTRODUCTION

Low Density Parity Check(LDPC) codes have been estab-

lished through their success in various different scenarios as

one of the most powerful and versatile codes available today.

Different standards such as Digital Video Broadcasting and

the IEEE 802.16e (WiMax) standards have already adopted

LDPC codes. In applications such as magnetic recording,

an important requirement is that the code used should be

capable of correcting bursts of erasures (in addition to random

errors) caused by media defects such as scratches. Correction

of burst erasures has application in wireless communication

systems limited by interference. In some OFDM-based cellular

systems, a contiguous band of subcarriers might be adffected

by interference from neighboring cells. One way of handling

such interference is to declare the affected symbols as erasures.

In such settings, a code with better burst erasure correction

performance will perform better.

While the threshold phenomenon of LDPC codes has been

exploited to design good degree distributions to protect against

random errors, burst errors and erasures need special attention.

In the case of finite length LDPC codes over the Binary

Erasure Channel (BEC), by searching for stopping sets that

occur within a sequence of consecutive bit nodes, one can

determine the maximum length burst erasure that can be

corrected by a given LDPC code. A simple method to improve

the burst erasure correction capability of a given LDPC code

is interleaving or a permutation of bit nodes. In this paper, we

study the problem of finding the optimal permutation of bit

nodes that will result in the maximum possible burst erasure

correction capability for a given LDPC code. Realizing that

this is essentially a combinatorial optimization problem similar

to the traveling salesman problem, we provide a simulated

annealing based approach in trying to maximize the span of the

given LDPC code. The simulated annealing approach greatly

reduces the computational requirements of the problem and

provides optimal permutations in many cases.

Note that interleaving to improve burst erasure correc-

tion results in a permutation-equivalent code that retains all

the random error-correcting properties of the original code.

Therefore, the design process for LDPC codes does not need

any alteration in order to imrove the burst erasure correction

capability.

LDPC codes have been previously designed to correct era-

sure bursts. Concepts such as maximum resolvable burst length

(similar to span) have been introduced, and deterministic and

random approaches for design of LDPC codes for correcting

bursts of erasures have been studied in [1], [2], [5], [3], [6],

[12]. In [8], an algorithm to improve the span of an LDPC

code has been presented.

Our novel approach to the problem is essentially combinato-

rial. This enables a direct application to the case of protograph

quasi-cyclic LDPC codes constructed using a base matrix

expanded by a circulant permutation matrix [11], [13]. The

stopping sets in the expanded matrix correspond to those in

the base matrix as shown in [7], [9], and maximizing the span
of the base matrix ensures that the span of the expanded matrix

is maximized too. From a hardware perspective, it is easier to

implement an interleaver for the base matrix. Thus, we greatly

reduce the complexity of the problem by running the algorithm

on the base matrix. We observe that our method works better

than the algorithm in [8] on dense base matrices of protograph

codes in the IEEE 802.16e (WiMax) standard. Based on an

enumeration of the stopping sets, we provide bounds for the

maximum burst erasure correction capability under iterative

decoding. This is useful for moderate length base matrices

such as those in the WiMax standard, where enumeration of

stopping sets is feasible.

The rest of the paper is organized as follows. In Section II,

we introduce the notion of span of stopping sets and relate span

to the burst erasure correction capability. Section III briefly

talks about the protograph quasi-cyclic LDPC codes and their

stopping sets. In Section IV we provide some bounds on the

maximum burst erasure correction capability by exhaustive
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enumeration of the stopping sets of the base matrix. Section V

sets up the optimization problem and discusses the simulated

annealing algorithm. In Section VI, we present the results of

the algorithm run on the codes in IEEE 802.16e (WIMax)

standard and compare these results with the results obtained

using the algorithm discussed in [8].

II. BURST ERASURE CORRECTION USING LDPC CODES

A. Stopping sets, Span

Erasure correction capability of LDPC codes under iterative

message-passing over a Tanner graph of a parity-check matrix

is governed by certain subsets of the bit nodes of the Tanner

graph called stopping sets [4]. A set of bit nodes is said to

be a stopping set if every check node connected to the set

is connected at least twice. To quantify the burst erasure

correction capability of LDPC codes under iterative decoding,

we define the span of the stopping sets of a given Tanner

graph of an LDPC code.

Definition 2.1 (Span): Let S be any non empty subset of the

set {1, 2, . . . , n}. Then the span of S, denoted by Span(S),
is equal to : maxx,y∈S(|x− y|+ 1)

Definition 2.2: Let Z be some non-empty collection of non-

empty subsets of the set {1, 2, . . . , n}. Span of Z, denoted by

Span(Z), is defined as : minS∈Z(Span(S))

Let us consider a length-n LDPC code C defined by a

parity-check matrix H that determines the Tanner graph used

for iterative decoding over a Binary Erasure Channel (BEC).

Let Span(H) denote the minimum length of a burst erasure

that cannot be corrected by the iterative algorithm. Let X
denote the collection of all non-empty stopping sets of H .

Then, as a consequence of the relationship between stopping

sets and burst erasure correction,

Span(H) = Span(X ).

III. PROTOGRAPH QUASI-CYCLIC LDPC CODES

Protograph quasi-cyclic LDPC codes are described using a

base matrix Hb of dimensions r × s and an expansion factor

m [14]. Let R be the m×m permutation matrix representing

a circular right shift of a length-m vector. The entries of the

base matrix Hb are chosen from the set −1, 0, 1, 2, . . . , m− 1.

To obtain the rm × sm expaned binary parity-check matrix

replace each -1 in the base matrix by the m×m all-zero matrix

and replace each j ∈ 0, 1, . . . , m− 1 in the base matrix with

Rj . These codes are referred to as cyclic lifts by some authors

[7].

A. Stopping sets

Consider the binary base matrix H ′ obtained from Hb by

replacing the negative entries in Hb by 0 and the non-negative

entriesby 1. Let H denote the rm×sm expanded matrix. Every

column of the expanded matrix can be indexed by an ordered

pair (i, j), where i ∈ {1, 2, . . . , s−1} denotes a column of Hb

and j ∈ 0, 1, . . . , m− 1 denotes a column in a shifted version

of R. Therefore (i, j) refers to the column (si + j) of H .

Lemma 3.1 (from [7]): Let S be a stopping set in the ex-

panded matrix H . Define the set S′ = {i, ((j + 1) mod m) :
(i, j) ∈ S}. Then the set S′ is also a stopping set of the

expanded matrix H [7].

Theorem 3.2 (from [9]): Let S be a stopping set in the

expanded matrix H . Let T = {i : (i, j) ∈ S} denote a set

of columns in the matrix H ′. The set T is a stopping set of

the linear binary code defined by H ′ [9].

B. Burst Erasure Correction

Using Theorem 3.2, every stopping set of the expanded

matrix H can be identified with a stopping set in the binary

base matrix H ′. Notice that this is a many-to-one map. We

use this relationship to establish the following result.

Theorem 3.3: Let b = Span(H ′) be the span of the binary

base matrix. For an expansion factor m, let t = Span(H) be

the span of the expanded matrix. then

(b− 2)m + 2 ≤ t ≤ bm

Proof: Suppose S is a stopping set of the expanded matrix

H with minimal span t, from Theorem 3.2, we see that S can

be related to a stopping set of the binary base matrix H ′ which

by hypothesis has a span of at least b. Thus the stopping set

S must span over at least b consecutive m × m expansion

matrices. The minimal and maximal possible span for such a

stopping set are (b− 2)m + 2 and bm, respectively.

From Theorem 3.3, we see that maximization of the burst

erasure correction capability of the quasi-cyclic LDPC code

defined by H can be approached by finding an interleaver to

maximize the span of the smaller binary base matrix H ′. Since

H ′ typically has a small number of columns (24 in the case of

WiMax LDPC codes) the computational requirements of the

problem are reduced.

IV. BOUNDS ON BURST ERASURE CORRECTION

CAPABILITY

In this section we present some simple bounds on the

burst erasure correction capability by using an enumeration

of stopping sets. These bounds are applicable especially for

quasi-cyclic LDPC codes with moderate-length base matrices.

To begin with, note that the burst erasure correction capa-

bility is bounded by the number of check nodes of the r × s
binary base matrix H ′. i.e. Span(H ′) ≤ r. This is a handy

bound that is independent of the base matrix structure and is

quite tight for high-rate codes.

Let X represent the collection of all stopping sets of the

matrix H ′ and let Xi represent the collection of all stopping

sets of size i. Let N(Xi) represent the number of stopping sets

of size i. Let Iχ represent the N(X )× s incidence matrix of

the set X , where every row of Iχ corresponds to the incidence

vector VSk
of a stopping set Sk. By the incidence vector VSk

we mean the binary vector [b1, b2, . . . , bs] where bi is 1 if

i ∈ Sk and 0 otherwise.
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The 2(2n + 1) cycle bound

If the incidence matrix IX2 contains a cycle of size 2(2n+1)
for 1 ≤ n ≤ � s−1

2 �, span(H ′) ≤ (� s−1
2 �+ 1).

Proof: Without loss of generality let us assume that s
is even. Suppose p is the permutation that maximizes the

span, split p into 2 halves each forming a set of size s/2.

Denote these sets as P1 and P2. Let {k1, k2, . . . , ki} be the

columns of H ′ involved in the cycle and contained in the

set P1; let {l1, l2, . . . , lj} be the corresponding columns of

the set P2 (i + j=2n + 1). By virtue of an odd number of

columns being involved in the cycle, it is seen that one of the

sets {k1, k2, . . . , ki} or {l1, l2, . . . , lj} is certain to completely

contain one of the stopping sets of size 2 that is part of the

cycle. This limits the span(H ′) to (� s−1
2 �+ 1).

The
(
n
k

)
subset bound

If P is a subset of size n of the bit nodes of the Tanner

graph of H ′ such that any set of k bit nodes from P contains
a stopping set, span(H ′) ≤

⌊
s−n

�n/(k−1)�
⌋

+ k.

Proof: Let P c contain the bit nodes not contained in P .

Let H
′
P be the Tanner graph formed by only the bit nodes in P .

Let p be a permutation of the n bit columns of H
′
P . Since every

set of k bits from P contains a stopping set, span(H
′
P ) ≤ k. If

suppose one bit were to be added to every length-(k-1) disjoint

segment in p then the span can be at most increased by one.

Repeating this step until all the bit nodes in Pc are exhausted

gives the bound.

The minimum weight bound

If P is a set of n columns in H ′ such that the minimum

weight of columns in P is k, Span(H ′) ≤
⌊

s−n
�n/(r−k+1)�

⌋
+

r − k + 2.

Proof: For the iterative decoding to be successful on a set

of erasures, the sub-matrix formed by erased bit nodes in H ′

must be reducible to a triangular matrix form. Irreducibility

to a triangular matrix implies the presence of a stopping set.

Given that the minimum weight of the columns is k, the largest

set of columns that can be be reduced to a triangular matrix

is r-k+1. Hence, any set of r-k+2 columns from P is certain

contain a stopping set. Invoking the
(

n
r−k+2

)
subset bound

gives the required bound.

V. THE OPTIMIZATION PROBLEM

The objective of this paper can now be given a precise

formulation as an optmization problem. Let us consider a

(n, k) LDPC code C with a Tanner graph defined by a parity

check matrix H . Let X = {S1, S2, . . . , St} be the collection

of minimal stopping sets in the Tanner graph. A minimal

stopping set is one that does not contain any stopping set

within it. Let p : {1, 2, . . . , n} → {1, 2, . . . , n} denote an

arbitrary permutation of the columns of H . If S is a subset

of {1, 2, . . . , n} let p(S) = {p{s} : s ∈ S}. Let p(C) denote

a code equivalent to C after the bits have been interleaved

according to p. It is readily seen that the stopping sets of P (C)
are given by p(X ) = {p(S1), p(S2), . . . , p(St)}. The optimal

interleaver that maximizes burst erasure correction capability

is given by

arg max
p

span(p(C)) = arg max
p

span(p(X ))

A direct approach to solving the above optimization problem

will involve (1) enumerating the minimal stopping sets of a

tanner graph, and (2) searching through all the n! permutations

of the bit nodes to maximize span.

Clearly, brute force approach here is computationally pro-

hibitive. Also, the above is an instance of combinatorial

optimization searching over permutations, and problems of

this kind are usually NP-hard, expect in a few instances. The

combinatorial nature of the problem and the large search space,

along with the unpredictable nature of the objective function,

motivates us to adopt a heuristic search method to solve the

problem. In the following section we provide an algorithm

based on simulated annealing. Simulated annealing is a heuris-

tic search algorithm that has worked very well for a range of

optimization problems and scales pretty well as the problem

size increases. Simply put, it hops from one permutation to

the other, with a slight bias towards permutations that yield

greater span, to find an interleaver that improves the span.

A. Simulated Annealing

Simulated annealing is a technique that has been used

successfully to solve optimization problems of large scale,

especially where a global extremum is hidden amongst many

poorer local extrema [18]. Assume s0 to be the initial state of

the system with a finite, discrete, state space. Let t denote

the temperate of the system. The initial temperature is set

to t0 ( temperature is a parameter that tries to emulate

the cooling process in annealing). Let s denote the current

state of the system. The function NextState(s) generates

a candidate new state that the system can choose to step

into. This function is probabilistic in nature, inducing some

randomness into the algorithm. The function E(s) denotes the

energy of the system when in state s. In optimization, it is

the value of the objective function at that state. The function

Oracle(s, NextState(s), t) decides whether the system must

move to the candidate new state or stay in the current state. For

a particular temperature t, the state generation and transition

steps are repeated kmax times. Then, the system is cooled

i.e t ← αt (typically α = 0.9), and the state transition

procedure is repeated. The algorithm runs until the system has

been sufficiently cooled, or the objective function has been

satisfactorily decreased/increased. The algorithm returns the

best state encountered and its corresponding energy.

Of the many combinatorial problems that have been solved

using simulated annealing, the traveling salesman prob-

lem(TSP) is relevant to the current context. TSP requires one

to compute the least distance round-trip through a given set

of cities such that each city is visited exactly once and the

trip ends at the starting city. There have been instances where

simulated annealing has been proven to be quite effective in

solving the TSP involving more than 1000 cities [15]. Just as

in the current scenario, the search space in TSP is the set of n!
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permutations. Span is certainly a more complicated function

than the relatively simple distance minimization function of

the TSP, thus further strenthening the need to adopt a meta-

heuristic algorithm. Having drawn an analogy between the two

problems, in the next section, we make use of a simulated

annealing routine designed in [17] for the TSP and adapt it to

solve the current problem.

B. Simulated annealing for maximizing span

At the heart of any simulated annealing routine lie the two

key functions- Oracle() and NextState(). To a large extent

the success of the routine is dependent on these two functions.

To begin with, the state of the system (LDPC code with parity

check matrix H) is likened to a permutation p of the columns

of the matrix H and the span of p(C) is taken as the equivalent

energy attribute of the system.

Algorithm 1 GenPerm()

1: Input- current permutation p;

2: At random, select b1, b2 s.t b1, b2 ∈ 1, 2, . . . , n & b1 < b2

3: pn : {1, 2, . . . , n} → {p(1), p(2), . . . , p(b1 − 1), p(b2),
p(b2 − 1), . . . , p(b1), p(b2 + 1), p(b2 + 2), . . . p(n)}

4: return pn;

The NextState() function that generates the candidate new

state, or in this case, a new permutation of bits can be chosen

in many ways. The function should be such that the energies

of the new states generated should be comparable to the

energy of the current state. In the current context it would

mean that the new permutation pn generated should be such

that Span(pn(C)) is comparable to Span(p(C)), where p
is the current permutation of the columns of H . One such

function that has been widely used while solving the TSP is

the GenPerm() function as described in Algorithm 1.

The GenPerm() function picks two bit positions at random

and generates a new permutation from the current permutation

by flipping all the bits in between the two selected bits while

retaining the locations of the remaining bits.

The Oracle() used to make decisions on moving to

the next state pn for the span optimization problem, uses

a very standard formula from the Metropolis-Hastings Al-

gorithm [16] and is given below. Oracle(s, , sn, t) =
Metrop(Span(pn(C)), Span(p(C)), t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Span(pn(C)) > Span(p(C)).

1 with Prob. exp(Span(pn(C))−Span(p(C))
t )

if Span(pn(C)) < Span(p(C)).

0 with Prob. 1− exp(Span(pn(C))−Span(p(C))
t )

if Span(pn(C)) < Span(p(C)).
(1)

The mathematical basis for using this formula comes from

the Boltzmann distribution of the energy states [17] and has

been used in many instances of simulated annealing. This

formula always accepts a new permutation pn that results in a

greater span while the decision is probabilistic if the new span

Span(pn(C)) is lesser than the current span Span(p(C)).
Note that the probability of moving to a permutation that

gives a lesser span is greater at higher temperatures and

gradually drops as the temperature is reduced.

Other parameters such as the initial temperature t0 and

kmax are chosen based on the size of the LDPC matrix

being handled. The initial temperature is chosen such that

it is considerably greater than the largest possible difference

in span and the cooling schedule determined by kmax, is

empirically adjusted for different codes. Algorithm 2 gives

the simulated annealing routine designed for maximizing span.

The variable nmoves keeps track of the successful state

transitions made by the system. The routine is terminated

when further efforts to improve the span become discouraging.

These are all features that have been incorporated based on the

simulated annealing routine for the TSP given in [17].

Algorithm 2 Simulated annealing for maximizing burst era-

sure correction capability

1: Initialize. p ← p0, sp← Span(p0(C))t ← t0, k = 0
2: while (t > tf ) do
3: while (k < kmax & nmoves < 0.2 ∗ kmax) do
4: pn ← GenPerm(p); spn ← Span(psn(C));
5: if Span(pn(C)) > Span(p(C)) then
6: sph ← spn; , ph ← pn;
7: end if
8: if (Metrop(Span(pn(C)), Span(p(C)), t)) then
9: p ← pn; sp ← Span(pn(C));

10: nmoves++;

11: end if
12: k=k+1;

13: end while
14: if nmoves = 0 then
15: break;

16: end if
17: t = 0.9t;
18: end while
19: Return sph, ph;

VI. RESULTS

Algorithm 2 was used to find interleavers that improved

the span of several LDPC codes. The results obtained were

compared with the bounds given in Section III and also against

the results obtained using the algorithm proposed in [8].

A. WiMax Codes

The algorithm was run on the base matrices of the proto-

graph quasi-cyclic LDPC codes in the WiMax standard. The

base matrix has 24 columns. The base matrix H ′ can be written

as a combination of two matrices- [Hr Hbd] where Hbd has a

bi-diagonal structure while Hr is a dense random matrix.

The algorithm was run on all the codes with rates varying

from 1/2 to 5/6. The algorithm performs exceptionally well
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Rate 1/2 popt = [5, 14, 12, 15, 9, 4, 8, 1, 18, 6, 16, 7, 13,
21, 10, 19, 23, 22, 20, 3, 17, 2, 11, 0]

Rate 2/3A popt = [14, 12, 19, 8, 13, 15, 2, 18, 20, 17, 1,
0, 10, 3, 6, 9, 4, 7, 22, 23, 21, 16, 11, 5]

TABLE I
RESULTS FOR WIMAX CODES

Code Initial Improved Improved Span Bound
span span using Algo. in [8]

Rate 1/2 3 12 6 12
Rate 2/3A 4 6 5 9
Rate 3/4A 2 4 3 5
Rate 3/4B 2 4 2 7

while trying to maximize the span of the rate 1/2 code,

returning an interleaver with a span of 12. As the bit pairs

(5,7), (7,11) and (5,11) in H ′ for the rate-1/2 code form

stopping sets, the cycle-6 (from Section IV) bound limits the

span to 12. Thus it is seen that Algorithm 2 maximizes the

span in this case. In comparison, the algorithm described in

[8] returns a span of 7. The optimal permutations are given

below:

The span of the rate 2/3A code was improved to 6 compared

to the obvious bound of 8. It was also noted that running the

algorithm on the rate 2/3B code would be a futile exercise

because every pair from the set of bits {0, 2, 4, 6, 8, 10, 12, 14}
forms a stopping set thus invoking the

(
8
2

)
bound and limiting

the span to 4. The large number of stopping sets is due to the

fact that the rate 2/3B code was designed for layered decoding.

An attempt to optimize the span for the rate 2/3B code resulted

in a span of just 2.

The spans of rate 3/4A code and the rate 3/4B code were

both improved to 4. The minimum weight bound limits the

span of the rate 3/4A code to 5. Table I summarizes the results

and comparisons with [8].

B. Regular/Irregular LDPC codes

Algorithm 2 was also tried on random LDPC codes. The

span optimization on a regular-(3,6), rate-1/2 code with n =
500 resulted in an increase of span from 193 to 206 while

the optimization on a (600, 200) code of the same degree

distribution saw an increase in span from to 149 to 157. The

channel threshold based bound, as discussed in [8], limits

the maximum burst erasure correction capability of the above

codes to 215. Good results were also seen when a rate-1/3

(1920,640) was optimized; this resulted in the span being

increased from 1066 to 1146. These results indicate that the

simulated annealing approach scales well as n increases. The

results are summarized in Table II. Span of a random LDPC

code was computed using the technique used in [8].

VII. CONCLUSION

We have studied the burst erasure correction capability of

LDPC codes, such as those in the WiMax standard, constructed

using shifted identity matrices. We have shown that interleav-

ing in the form of permutations of the columns of the base

TABLE II
RESULTS FOR RANDOM LDPC CODES

Code Block Degree Initial Improved Bound
rate size Dist . span span
1/2 500 (3,6) 193 207 215
2/3 600 (3,6) 149 157 215
1/3 1920 irregular 1066 1146 1280

matrix results in a significant improvement in burst erasure

correction capability. We have developed bounds for the max-

imum burst erasure correction capability and provided a sim-

ulated annealing based algorithm for finding good interleavers

and compared the results with the bounds. Such interleaving

appears to be ideal for applications in magnetic recording

and interference-limited wireless channels. Incorporating burst

erasure conditions in the construction of the base matrix and

exploring the problem landscape for burst erasure correction

maximization are possible avenues for future work.
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