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Cellular Systems

  

Time-varying channel

Resource sharing – Interference constraints
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Downlink Resource Allocation Problem

Channel information

User 1

User 2

User K

Traffic
Basestation

Physical resources: power and bandwidth
Total transmit power constraint
Maximize system throughput
Fairness or Quality of Service (QoS) constraints
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Dynamic Resource Allocation

User 1 User 2 User 3

Periodic

reallocation of 

resources

Resources: Time, Bandwidth, Power

Adaptation to channel and traffic conditions
Dynamic resource allocation

I Reallocation period of the order of a millisecond
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Adapting to the Channel
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Adapting to the Channel: Maximizing Capacity

User 1

User 2

User K

Basestation

Select the
user with

best channel

Channel K

Channel 2

Channel 1

Infinite backlog assumption

All power and bandwidth resources to one user

User with best achievable rate chosen:

i = arg max
k

Rk ,

where Rk is the rate that can be supported by user k .
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Maximizing Capacity: Parallel Channels

User 1

User 2

User K

Basestation

For each

best channel
user with

Select the

parallel
channel

Parallel Channels to each user

Bandwidth resources split to achieve parallel channels

For each channel n, user with best channel conditions chosen:

in = arg max
k

Rk,n.

Water-filling power allocation
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Fairness

Proportional Fairness

i = arg max
k

Rk

Rk,av
,

where Rk,av is the average rate that can be supported by user k .

max
∑

k log (Tk),

where Tk is the average long-term throughput of user k .
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Parallel Channels: OFDM

Power

User 1

User 2

User 3Su
bc

ar
ri

er
s

Available resources:
I Subcarriers
I Transmit power

Channel is frequency-selective ⇒ subcarriers not identical.
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Fairness: Joint Subchannel and Power Allocation

Proportional rate subcarrier allocation [Rhee]

Proportional rate subcarrier allocation + power optimization [Shen]

Joint subcarrier and power allocation
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Fairness: Joint Subchannel and Power Allocation

power 

Split power equally 
amongst subcarriers

Start 

Check
if all subcarriers 

are allocated

Allocate a 
subcarrier to a user

Start 

Split power equally 
amongst subcarriers

Allocate all 
subcarriers to users

Update each user’s
queue

No

Yes

End  

Optimize power
allocation with

Update each user’s
queue

End  

Optimize power

allocation with

power
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Gradient Algorithm

Stolyar (2005)

General utility functions

Multiuser scheduling at the same time

PF is a special case
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Adapting to the Channel and Traffic
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Adapting to the Channel and Traffic

  

Queues for each user

Servers

Users

Time-varying connectivity

Multi-Queue Multi-Server Model for each time slot

Server: Subcarrier/Group of subcarriers/Spreading code
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Resource Allocation/Cross-layer Scheduling Goals

Scheduling Goals
I Stability and throughput optimality

F Stability: Average queue length finite

Arrival rate of user 1

A
rr

iv
al

 r
at

e 
of

 u
se

r 
2

Stability region of policy 1

Stability region of policy 2

Stability region of throughput optimal policy

I Packet delay constraints
I Fairness
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Stability in a general wireless network

[Tassiulas et al 1992, Georgiadis et al 2006]
I Dynamic backpressure policy

Destination node

b
1 r14

b2

b3r34

b1 b3

(b2 − b1)r21

(b1 − b3)r13

b2r24

Interference model: Only certain links can be activated simultaneously

Scheduling problem: Which links will you activate?

Solution: Activate those links such that the sum of their weights is
maximum.
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Dynamic back-pressure policy for our setting
Max-Weight Scheduling

Users Servers
b1(t)

b2(t)

b1C11

b2C
21

b
1C

12

b2C22

Only one link per server to be activated. Which links to activate?

Solution:
I Make the servers as destination nodes.
I Assign the weights for each link as in back-pressure policy.
I Activate those links such that the sum of their weights is maximum.

max
∑

k

bnCnk

bn: Backlog of user n, Cnk : Capacity of user n on server k
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Two Throughput Optimal Policies

Users Servers
b1

b2

b3

b1C11

b1C
12

b3C32

b2C21

b 3
C 31

b2C22

Policy 1: Max-Weight Scheduling

Policy 2: Improving delay performance
I Update queue information after each server is scheduled
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Joint Server and Power Allocation

Finite number of power levels
I Max-weight scheduling

Joint subcarrier and power allocation
I Joint optimization
I Sub-optimal solutions

Srikrishna Bhashyam (IIT Madras) 21 June 2011 19 / 44



Results: Max. Arrival Rate vs. Transmit Power
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Max. arrival rate for less than 0.5% packets dropped
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Results: Delay Performance
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Arrival rate = 3 Mbps
Homogenous rate users

Best and worst delay performance among users plotted
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Fairness and Utility Maximization

Arrival rate vector outside stability region
I Support a fraction of the traffic
I Optimize utility based on long term throughput
I Flow control to get stabilizable rates + stabilizing policy
I Fairness based on choice of utility function

F Proportional fairness
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Fairness and Utility Maximization

Flow control + stabilizing policy

Maximize utility subject to stability

max
{rk}

∑
k

[Vfk(rk)− bk rk ]
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Adapting with Partial Information
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Using Delayed Information

Second Interval Third IntervalFirst Interval

Slot

T

b(T − 1), C (T − 1) b(2T − 1), C (2T − 1)

T T

Time-slots are grouped into intervals

Channel and queue information available only once in T slots
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Channel model

USER 1’s CHANNEL USER 2’s CHANNEL

1 2 3 4 5 6

0

1

2

3

654321

0

1

2

3

SERVERS SERVERS

PACKETS PACKETS

Cnk : channel capacity of user n on server k.

Cnk ∈ {0, 1, 2, 3}.
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Loss model

0

Packets sent

Rate

Capacity

Rnk

Rnk <= Cnk Rnk > Cnk

Rnk : number of packets user n transmits on server k .

Cnk(lT − 1): channel information available at the start of l th interval.
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Scheduling with infrequent measurements

Retain throughput optimality of dynamic backpressure policy

Two policies: Policy 1 and Policy 2

Comparison with KLS policy [Kar et al 2007]
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Policy 1 & Policy 2
Users Servers

b1

b2

b3

b1C̃11

b1 C̃
12

b3C̃32

b 3
C̃ 31

b2C̃21

b2C̃22

Define C̃nk = max E [Tnk(t)|Cnk(lT − 1)]

= max
r

r Pr{r ≤ Cnk | Cnk(lT − 1)}

Policy 1 is the dynamic back pressure policy for our setting

Assignment changes every slot

Policy 2: Update queue information after each server is scheduled
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KLS Policy

Users Servers

b31Ĉ
31

b11

b21

b31

b12

b22

b32

b32Ĉ
32

b
12 Ĉ

12

b
11 Ĉ

11

b21Ĉ21

b22Ĉ22

Virtual queue for each user-server pair

Define Ĉnk(lT ) as

1

T
E

(l+1)T−1∑
t=lT

Cnk(t)
∣∣∣Cnk(lT − 1)


Assignment changes once in T slots
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Simulation setup

Truncated Poisson arrivals

128 users and 16 servers

Markov fading channel with probability transition matrix

Backlog and delay are used as metrics for comparison

Simulations for both symmetric and asymmetric arrivals
I Symmetric case shown here
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Average backlog comparison: Slow fading, T = 8
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All the policies have similar stability region.
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Average backlog comparison for low traffic
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At low traffic, proposed policies outperform KLS policy.
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Delay comparison
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Net arrival rate = 25.6, T = 4
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Average backlog comparison vs T for Policy 2
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Average backlog comparison for different policies
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Comparison of stability regions: Fast fading
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2 queues, 1 server, T = 2, states are {0, 1}

Probability transition matrix:

[
δ 1− δ

1− δ δ

]
, δ = 0.1
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Possible Extensions
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More Physical Layer Options

Multiple antennas

Power allocation across resources (servers)

Interference processing vs. Interference avoidance

Multi-cell scenario: Centralized vs. Distributed methods
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Approximate Solutions

Lower complexity/approximate solutions to optimization problem

Appropriate reduction search space of physical layer modes
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Summary

Adapting to the channel

Adapting to the channel and traffic
I Max-weight Scheduling

Adapting to partial information
I Conditional expected rate

Possible extensions
I Approximate lower complexity solutions
I Appropriate choice of physical layer modes
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