Almost Budget Balanced Mechanisms with Scalar Bids for Allocation of a Divisible Good¹

Srikrishna Bhashyam

Department of Electrical Engineering IIT Madras

Joint work with D. Thirumulanathan, H. Vinay, R. Sundaresan

Fifth Workshop on Frontiers of Networks: Theory and Algorithms

ACM Mobihoc 2017

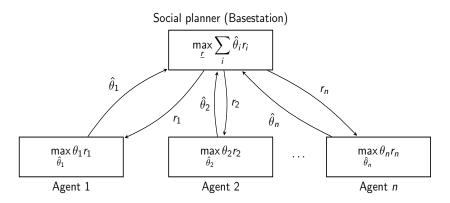
¹Partly supported by DST

Srikrishna Bhashyam (IIT Madras)

Almost Budget Balanced Mechanisms

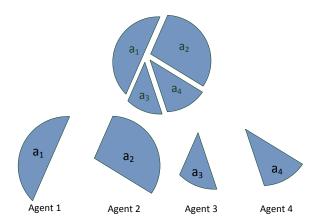
Motivation: Uplink Scheduling Problem

- Agent i's valuation = queue length (θ_i) x instantaneous rate (r_i)
- Valuation function is known to everyone except for θ_i



Agents can report wrong queue lengths

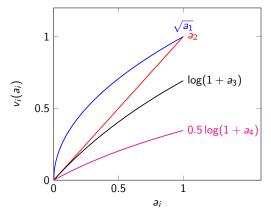
A Divisible Resource



Example Randomized allocation of a link with capacity C, $a_i = Pr[allocation \ to \ agent \ i] * C$

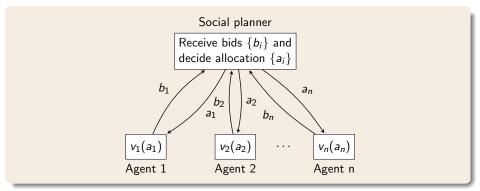
Almost Budget Balanced Mechanisms

Valuation functions (or Utility functions)



- Valuation functions are agents' private information
- Need to signal the valuation functions to the social planner
- Communication constraints: Restriction to scalar bids
- Strategic agents

Setting and Efficiency



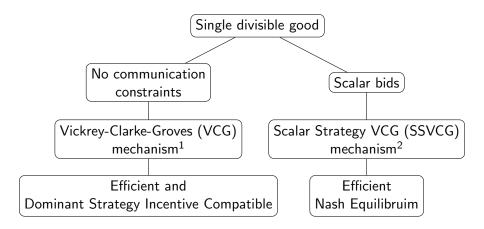
• Agents know the allocation mechanism and are strategic

• Efficiency: Allocate resource such that sum valuation is maximized

$$\max_{\{a_i\}}\sum_{i=1}^n v_i(a_i)$$

• Question: What should be the allocation and pricing mechanism?

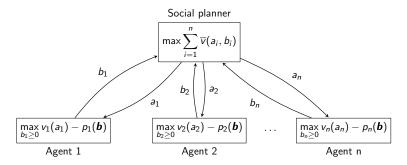
Known Results



Vickrey 1961, Clarke 1971, Groves 1973
 ² Yang & Hajek 2007, Johari & Tsitsiklis 2009

SSVCG mechanism

Scalar-parametrized surrogate valuation function set: $\{\overline{v}(\cdot, \theta), \theta \ge 0\}$



Payment imposed on agent *i*

$$p_i(oldsymbol{b}) = -\sum_{j
eq i} \overline{v}(oldsymbol{a}_j^*, oldsymbol{b}_j) + \sum_{j
eq i} \overline{v}(oldsymbol{a}_{-i,j}^*, oldsymbol{b}_j) - r_i(oldsymbol{b}_{-i})$$

Choice of $r_i(\mathbf{b}_{-i})$ arbitrary: A class of mechanisms

Rest of this talk

Problem

Allocation of a single divisible good among strategic agents

- Efficiency
- Scalar bids
- Almost budget balance

Design rebates for the SSVCG setting

Approach

- Formulate rebate design as a convex optimization problem
- Simplification to remove dependence on true valuations
- Solution method to guarantee good approximation

Budget Balance

2

▲圖▶ ▲ 国▶ ▲ 国▶

Budget Balance

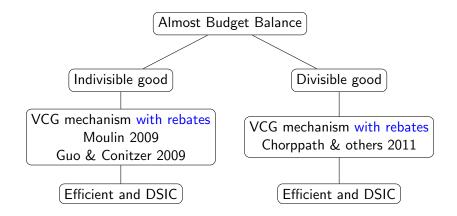
Scenarios where revenue maximization is not a consideration

```
Strong budget balance
Sum of payments \sum_{i} p_i(\mathbf{b}) (or) Budget surplus = 0
```

Weak budget balance (or) Feasibility Budget surplus ≥ 0

- Strong budget balance not possible in our setting*
- Notions of almost budget balance
- * Green & Laffont 1977

Known Results: No communication constraints



Two notions of almost budget balance Choose $r_i(\mathbf{b}_{-i})$ to achieve almost budget balance

Formulation of the optimization problem

Scalar bids, divisible case

12 / 26

Choice of objective: Two notions of almost budget balance

Guo & Conitzer

Worst-case fraction of payments retained after rebates

$$\sup_{\boldsymbol{\theta}} 1 - \frac{\sum_{i=1}^{n} r_i(\boldsymbol{\theta}_{-i})}{p_{\mathcal{S}}(\boldsymbol{\theta})}$$

Moulin

Worst-case ratio of sum of payments to sum of valuations

$$\sup_{\theta} \frac{p_{\mathcal{S}}(\theta) - \sum_{i=1}^{n} r_i(\theta_{-i})}{\sigma(\theta)} = \sup_{\theta} \frac{p_{\mathcal{S}}(\theta)}{\sigma(\theta)} \left(1 - \frac{\sum_{i=1}^{n} r_i(\theta_{-i})}{p_{\mathcal{S}}(\theta)}\right)$$

 $p_S(\theta) =$ Sum of payments under zero rebates $\sigma(\theta) =$ Optimal sum of valuations

We use an adaptation of the Moulin notion to optimize the rebates

- 4 同 6 4 日 6 4 日 6

Constraints on the choice of rebates

(F) Feasibility: Sum of net payments ≥ 0

(VP) Voluntary Participation: $v_i(a_i^*) - p_i(\boldsymbol{b}) \ge 0$ for each agent i (or)

 $r_i(\boldsymbol{b}_{-i}) \geq q_i(\boldsymbol{b}_{-i}),$

where $q_i(\mathbf{b}_{-i})$ is the negative of the utility under zero rebates

- (VP) constraint depends on true valuation functions
- Are there nontrivial rebate functions that satisfy (VP) and (F) constraints?

Some Design Choices

- Surrogate valuation functions of the form $\overline{v}(a, \theta) = \theta U(a)$
- Deterministic and anonymous rebates
 - Information available to planner is symmetric to permutation of agent labels
- Linear rebates

$$r_i(\boldsymbol{b}_{-i}) = c_0 + c_1(\boldsymbol{b}_{-i})_{[1]} + \cdots + c_{n-1}(\boldsymbol{b}_{-i})_{[n-1]},$$

where $(\boldsymbol{b}_{-i})_{[j]}$ is the j^{th} largest entry of \boldsymbol{b}_{-i}

- Restrict bids to come from $\hat{\Theta} = \{ \boldsymbol{b} \in \mathbb{R}^n_+ | b_1 \ge b_2 \ge \ldots \ge b_n \ge 0 \}$
 - Each b is a Nash equilibrium for some valuation profiles or in the closure
 - Objective depends only on the ordered bids
 - No dependence on true valuations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Optimization problem

$$r_i(\boldsymbol{b}_{-i}) = c_0 + c_1 b_1 + \ldots + c_{i-1} b_{i-1} + c_i b_{i+1} + \ldots + c_{n-1} b_n.$$

$$\begin{split} \min_{c} \sup_{\theta \in \hat{\Theta}} & \left[\frac{p_{S}(\theta) - \sum_{i=1}^{n} r_{i}(\theta_{-i})}{\sigma_{S}(\theta)} \right] \\ \text{subject to} \quad (\mathsf{F}) \quad nc_{0} + \sum_{i=1}^{n-1} c_{i}(i\theta_{i+1} + (n-i)\theta_{i}) \leq p_{S}(\theta), \ \forall \theta \in \hat{\Theta} \\ (\mathsf{VP}) \quad c_{0} + \sum_{j=1}^{i-1} c_{j}\theta_{j} + \sum_{j=i}^{n-1} c_{j}\theta_{j+1} \geq q_{i}(\theta), \ \forall \theta \in \hat{\Theta}, \forall i. \end{split}$$

(VP) constraint still involves true valuation functions

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Simplification of constraints and a reformulation

17 / 26

Simplification of (VP) constraints

Constraints (F) and (VP) together imply that $c_0 = c_1 = 0$

Let $c_0 = c_1 = 0$. Then, the (VP) constraint is equivalent to

$$\sum_{i=2}^{k} c_i \ge 0, \text{ for } k = 2, 3, \dots, n-1.$$

Proof using:

- Appropriate choice of heta
- Nash equilibrium property
- Some technical assumptions on the true and surrogate valuations

Min-max problem as a generalized linear program Introduce auxiliary variable t

subject to

$$\begin{array}{l} \min_{c,t} t \\ \text{(F)} \quad \sum_{i=2}^{n-1} c_i (i\theta_{i+1} + (n-i)\theta_i) \leq p_S(\theta), \ \forall \theta \in \hat{\Theta} \\ \text{(VP)} \sum_{i=2}^k c_i \geq 0, \ k = 2, 3, \dots, n-1, \\ \text{(W)} \quad \sum_{i=2}^{n-1} c_i (i\theta_{i+1} + (n-i)\theta_i) + t\sigma_S(\theta) \geq p_S(\theta), \forall \theta \in \hat{\Theta}. \end{array}$$

(W) captures the constraint associated with the worst-case objective.

"Generalized" LP because the above LP has a *continuum* of linear constraints parametrized by $\theta \in \hat{\Theta}$

Srikrishna Bhashyam (IIT Madras)

Almost Budget Balanced Mechanisms

Can we replace $\hat{\Theta}$ with a compact set?

Prove and use:

- Monotonicity of VCG payments:
 For fixed θ_{-i}, the map θ_i → p_S(θ_i, θ_{-i}) is increasing.
- Scaling property of VCG payments:
 For fixed θ, the map λ → p_S(λθ)/λ is decreasing.

For the (W) constraint, $\hat{\Theta}$ can be replaced by $\Theta = \{ \boldsymbol{\theta} \in \hat{\Theta} : 1 = \theta_1 \}$

For the (F) constraint, $\hat{\Theta}$ can be replaced by $\{ \boldsymbol{\theta} \in \hat{\Theta} : 1 = \theta_1 = \theta_2 \}$

Helps in the guarantee for constraint sampling

Constraint sampling with deterministic guarantee

Sample constraints using an ϵ -cover of Θ :

```
|Value of the Sampled LP - Value of the Generalized LP| \leq \kappa \epsilon
```

under some conditions

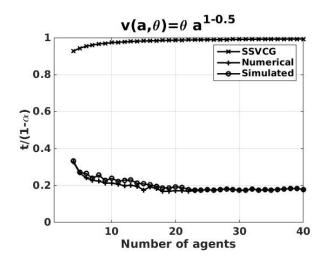
- Proof for a general uncertain convex program (UCP)
- Problem here is a special case

Numerical Results

(日) (同) (三) (三)

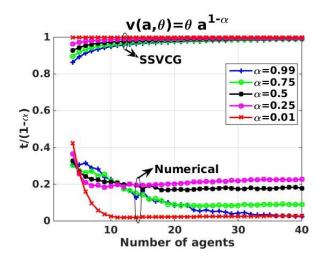
2

Worst-case objective vs. Number of agents



Significant reduction in budget surplus with linear rebates

Worst-case objective vs. Number of agents



Significant reduction in budget surplus with linear rebates

Summary

Problem

Allocation of a single divisible good among strategic agents

- Efficiency
- Scalar bids
- Almost budget balance

Design rebates for the SSVCG setting

Contributions

- Rebate design as a convex optimization problem
- Simplification to remove dependence on true valuations
- Solution method to guarantee good approximation
- Numerical results to show significant reduction in budget surplus

Open Questions

- Almost budget balance criterion in Guo & Conitzer 2009
- Network setting in Johari & Tsitsiklis 2009
- Optimality of linear rebates
- Relaxation of the anonymous rebates constraint

Thank you

http://www.ee.iitm.ac.in/~skrishna/

D. Thirumulanathan, H. Vinay, S. Bhashyam, R. Sundaresan, "Almost Budget Balanced Mechanisms with Scalar Bids For Allocation of a Divisible Good", European Journal of Operational Research, Volume 262, Issue 3, 1 November 2017, Pages 1196-1207, ISSN 0377-2217.