LDPC codes for OFDM over an Inter-symbol Interference Channel

Dileep M. K. Srikrishna Bhashyam Andrew Thangaraj

Department of Electrical Engineering IIT Madras

June 16, 2008

= 990

LDPC Theory Results

Outline

- LDPC codes
- OFDM
- Prior work
- Our work

2 LDPC Theory

- Representation
- Analysis

- Analysis
- Threshold Estimation

三日 のへの

-

LDPC codes OFDM Prior work Our work

Background on LDPC codes

- Low Density Parity Check (LDPC) codes
 - linear codes with sparse parity-check matrices
 - simple definition, capacity-approaching performance
- LDPC analysis and design
 - large ensembles of codes all with same performance
 - random code from ensemble performs close to average
- How is the ensemble specified?
 - · weights of the columns and rows of the parity-check matrix
 - weights are collected into weight distribution polynomials

Analysis and Design Tools for LDPC Codes

Study average performance of ensemble of codes whose parity-check matrices have the same weight distribution

ELE NOR

LDPC codes OFDM Prior work Our work

Message-Passing Decoders, Thresholds, Density Evolution

- Message-passing decoders: practical, iterative
 - performance of ensemble is studied under message-passing decoding
- Threshold phenomenon
 - threshold = SNR* \Rightarrow SNR > SNR* will result in successful decoding
 - block-length $\rightarrow \infty$, iterations $\rightarrow \infty$
- Density evolution
 - tool to determine threshold

Study of LDPC codes in a new system involves...

developing a density evolution algorithm and determination of threshold

ELE DQA

LDPC codes OFDM Prior work Our work

Threshold phenomenon

ELE DOO

LDPC codes OFDM Prior work Our work

OFDM

• The channel model

$$\hat{\mathbf{c}} = \mathbf{H}.\mathbf{c} + \mathbf{N}.$$

- Binary Input alphabet. BPSK modulation.
- Assumptions:
 - A codeword is distributed over a single OFDM symbol
 - The blocklength of the code (N_c) tend to infinity
- In the limit, there is no cyclic prefix overhead

ELE DQA

LDPC code OFDM Prior work Our work

Prior Work on LDPC Codes in an OFDM System

- Prior work on LDPC over OFDM
 - Mannoni *et al*: mixture PDF analysis and optimization of degree distribution
 - Baynast et al: positioning of information bits in OFDM subcarriers
- Prior work on LDPC over ISI
 - Kavcic et al: LDPC codes over binary-input ISI channels with BCJR
- Previous theoretical works employ a Gaussian mixture density analysis for threshold estimation
- No rigorous proof for the existence of threshold in OFDM systems

ELE DQA

Introduction LDPC codes LDPC Theory OFDM LDPC over OFDM Prior work Results Our work

Our Work

- Propose a rigorous density evolution
- Existence of LDPC thresholds
- Method for threshold estimation
- Comparison of LDPC thresholds with OFDM capacity
- Comparisons between the time-domain BCJR algorithm proposed by Kavciv *et al*
- Mercury/Waterfiling power allocation to improve the OFDM capacity and LDPC thresholds

ELE OQA

LDPC Codes : Regular and Irregular

- Regular LDPC Codes
 - H matrix with constant column weight (*w_c*) and constant row weight (*w_r*)
 - Notation : (n, w_c, w_r) regular code
- Irregular LDPC Codes
 - Column weights (row weights) are not equal
 - Bit node degree distribution $\lambda(x) = \sum_{i=2}^{d_v} \lambda_i x^{i-1}$
 - λ_i : the fraction of all edges connected to variable nodes of degree i
 - Check node degree distribution $\rho(x) = \sum_{j=2}^{d_c} \rho_j x^{j-1}$ ρ_j : the fraction of all edges connected to check nodes of degree *j*
 - Notation: (n, λ, ρ)

∃ ► ▲ ∃ ► ■ | =

Density Evolution

- Tracks the evolution of the pdf of the messages
- Initial Message: LLR of the received value

For AWGN channel, initial PDF of the messages $f_0 \equiv \mathcal{N}\left(\frac{2}{\sigma^2}, \frac{4}{\sigma^2}\right)$

• PDF of the messages after *l* rounds of message passing is calculated recursively

$$f_{l}=f_{0}\otimes\lambda\left(\rho\left(f_{l-1}\right)\right)$$

$$\lambda(f) := \sum_i \lambda_i f^{\otimes (i-1)}, \quad \rho(f) := \sum_i \rho_i f^{\boxtimes (i-1)}$$

• Average probability of error after I^{th} iteration at given SNR: $Pr(error)^{I} = Pr(message < 0) + \frac{1}{2}Pr(message = 0)$

III DOG

Representation Analysis

Density Evolution: Conditions

Channel Symmetry

$$p(y_t = q | x_t = 1) = p(y_t = -q | x_t = -1).$$

- Decoder Symmetry
 - Variable node symmetry
 - Check node symmetry

• Advantage: Error probability becomes independent of codeword

• Symmetry of Message PDF

$$f_l(x) = e^x f_l(-x).$$

ELE OQA

Analysis Threshold Estimation

LDPC over OFDM : Symmetry conditions

Channel Symmetry

- OFDM channel \rightarrow Parallel AWGN channels
- Each channel is symmetric.

$$p_{Z_i|C_i}(z_i|c_i=1) = p_{Z_i|C_i}(-z_i|c_i=-1).$$

- Analysis can be restricted to the All-one Codeword
- LLR density in the *i*th channel:

$$U_i \sim \mathcal{N}\left(\frac{4|H[i]|^2}{\sigma^2}, \frac{8|H[i]|^2}{\sigma^2}\right).$$

• LLR distribution is symmetric

ELE DOG

Analysis Threshold Estimatior

Interleaving

• How should the bits be assigned to the subcarriers?

- Equivalent to the design of an interleaver
- Is there an optimum assignment?.
- Are we going to analyze the LDPC performance for a *given assignment*?
 - Gaussian approximation is necessary in the analysis

Analysis Threshold Estimatior

Random Interleaving

• Concentration Theorem:

LDPC performance with different random interleaving are concentrated around the average performance

- It is enough to analyze this average performance
- Eliminates the need for Gaussian approximation in the analysis

8.4 8.6 8.8

Analysis Threshold Estimatior

Concentration Theorem

- LDPC performance with different random interleaving are concentrated around the average performance
- Define: $p_{\underline{H_i}}^l$ = probability of incorrect message along an edge at the /th iteration when the interlever chosen uniformly at random is H_i .
- Define: Error concentration probability $\overline{p} = \frac{1}{N!} \sum_{i=1}^{N!} p'_{H_i}$
- Theorem:

$$P\left(\left|p_{\underline{H_i}}-\overline{p}\right|\geq \frac{\epsilon}{2}\right)\leq 2e^{-\beta\epsilon^2n}.$$

- It is enough to analyze this average performance
- Eliminates the need for Gaussian approximation in the analysis

Analysis Threshold Estimatio

Initial PDF estimation and Density Evolution Algorithm

The algorithm

Consider a degree distribution pair (λ, ρ) and transmission over an OFDM channel with N_c subcarriers with code of blocklength $n = N_c$, with associated L-densities $\tilde{f}_i, i \in \{1, 2, ..., N_c\}$. Define

$$f_0 = \frac{1}{N_c} \sum_{i=1}^{N_c} \tilde{f}_i$$

then for $l \geq 1$,

$$f_{l}=f_{0}\otimes\lambda\left(\rho\left(f_{l-1}\right)\right),$$

- Monotonicity and Threshold
 - The update equations : Same as AWGN
 - Same monotonicity argument
 - Existence of threshold!!

III NOR

Analysis Threshold Estimation

Threshold Estimation

- We let the number of subcarriers N_c tend to infinity
- LLR distribution depends on the the DTFT of the channel impulse response $H(e^{j\omega})$

$$f(u,\omega) = \frac{\sigma}{4|H(e^{j\omega})|\sqrt{\pi}} \exp\left[-\frac{(\sigma^2 u - 4|H(e^{j\omega})|^2)^2}{16|H(e^{j\omega})|^2\sigma^2}\right]$$
$$H(e^{j\omega}) = \sum_{i=-\infty}^{\infty} h[i]e^{-j\omega i}$$

- $\bullet\,$ LLR distribution is now a continuous function of the angular frequency ω
- Summation changes to an integral

$$f_0(u) = \frac{1}{2\pi} \int_0^{2\pi} f(u,\omega) d\omega$$

ELE OQO

Threshold Estimation: Channel with spectral nulls

- The function $f(u, \omega)$ is not always well behaved
- Problems in channels with spectral nulls
- New approach to calculate the $f_0(u)$
- Using the idea of characteristic function

$$egin{array}{rcl} f(u,\omega) &
earrow & f_0(u) \ \downarrow & & \uparrow \ \hat{f}(t,\omega) &
ot & & \hat{f}(t) \end{array}$$

ヨヨー わすゆ

Analysis Threshold Estimation

Threshold Estimation

• Characteristic function:

$$\hat{f}(t,\omega) := \int_{-\infty}^{\infty} f(u,\omega) e^{jut} du$$

$$= \exp\left[-\frac{4|H(e^{j\omega})|^2 t^2}{\sigma^2} + j\frac{4|H(e^{j\omega})|^2 t}{\sigma^2}\right]$$

• Advantage: A well behaved characteristic function obtained analytically

$$\hat{f}(t) := \frac{1}{2\pi} \int_0^{2\pi} \hat{f}(t,\omega) \, d\omega$$

$$f_0(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(t) \, e^{-jut} \, dt$$

ELE DQA

Results

- Thresholds for different rate regular and irregular LDPC codes
- Validation by simulation
- Comparison with OFDM capacity
- Comparison with LDPC threshold over a binary ISI channel with BCJR equalization

ELE DQA

Thresholds: Channel without spectral null

• Channel: $\{h_2[i]\} = [0.800, 0.600]$

Srikrishna LDPC codes for OFDM over an Inter-symbol Interference Channel

Thresholds: Channel with spectral null

• Channel: $\{h_1[i]\} = \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}.$

ъ.

Mercury/Waterfilling Power allocation

• The optimum power allocation for parallel Gaussian channels with arbitrary input constellation

• Channel:
$$\{h_1[i]\} = \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}.$$

Applying Mercury/waterfilling for better LDPC thresholds

LDPC thresholds with Mercury/Waterfilling Power allocation

• Channel: $\{h_1[i]\} = \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}.$

Srikrishna LDPC codes for OFDM over an Inter-symbol Interference Channel

Conclusions

- Developed a rigorous density evolution for binary-input OFDM and proved the existence of thresholds
 - LDPC thresholds are very close to OFDM capacity at higher rates
- Compared OFDM-BPSK capacity and ISI-BPSK capacity
 - At higher rates, ISI-LDPC thresholds are much better than OFDM-LDPC thresholds
- Mercury/Waterfilling power allocation over OFDM subcarriers
 - Again, LDPC thresholds are very close to OFDM capacity

ELE NOR

Future work

- Achieving capacity at very low rates
- Optimum bit-loading with Mercury/Waterfilling power allocation to improve capacity and thresholds
- Optimization of irregular LDPC code for OFDM
- Extension to wireless channels

ELE OQA

References I

T. J. Richardson and R. Urbanke,

"The capacity of low-density parity check codes under message passing algorithm,"

IEEE Transactions on Information Theory, vol. 47, pp.599–618, Feb 2001.

S. Y. Chung, T. Richardson, R. Urbanke,

"Analysis of sum-product decoding of low density parity check codes using a Gaussian approximation,"

IEEE Transactions on Information Theory, vol. 47, pp.657–670, Feb 2001.

A. Kavčić, X. Ma, M. Mitzenmacher,

"Binary Intersymbol Interference Channels: Gallager Codes, Density Evolution and Code Performance Bounds",

IEEE Transactions on Information Theory, pp.100–118, Feb 2002.

ENVEN ELE NOR

References II

V. Mannoni, G. Gelle, D. Declercq,

"A Linear Criterion to Optimize Irregular LDPC Codes for OFDM Communicatins,"

IEEE Vehicular Technology Conference, vol.1, pp.100–118, May 2005.

📔 A. de Baynast, A. Sabharwal, B. Aazhang,

"LDPC Code Design for OFDM channel: Gragh Connectivity and Information Bits Positioning,"

International Symposium on Signals, Circuits and Systems, ISSCS 2005. vol. 2, pp.649–652, July 2005.

- A. Lozano, A.M. Tulino , and S. Verdu,

"Optimum Power Allocation for Parallel Gaussian Channels With Arbitrary Input Distributions",

IEEE Transactions on Information Theory, Vol. 52, July 2006.

III NOR