Spatial and Temporal Power Allocation for MISO Systems with Delayed Feedback

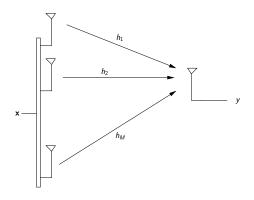
Srikrishna Bhashyam¹ Venkata Sreekanta Annapureddy Devdutt V. Marathe T. R. Ramya¹

¹Department of Electrical Engineering Indian Institute of Technology Madras skrishna@ee.iitm.ac.in

Multiple Antenna Wireless Systems

- Multiple Antennas at the transmitter and/or receiver
 - Ergodic Capacity
 - Outage
- Channel feedback in multiple antenna systems
 - Perfect channel knowledge at the transmitter/receiver
 - Partial/imperfect channel knowledge at the transmitter
 - Channel estimation error
 - Feedback delay
 - Limited rate (quantized) feedback

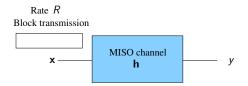
System Model



$$y = \mathbf{h}^{\mathsf{T}} \mathbf{x} + z$$

$$\mathbf{h}_{M \times 1} = \begin{bmatrix} h_1 & h_2 & \cdots & h_M \end{bmatrix}^{\mathsf{T}} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I}_{\mathbf{M} \times \mathbf{M}})$$
(1)

Performance measure: Outage probability



- Block fading: Achievable rate in each block depends on channel realization
- Outage probability Pout: Measure of block error probability
- $P_{out} = \text{Prob}[C_h < R] = \text{Prob}[\max I(\mathbf{x}; y | \mathbf{h}) < R]$

Scope of the work

Problem considered:

 Minimize outage probability of Multiple Input Single Output (MISO) systems with delayed feedback

Cases considered:

- Delayed feedback
 - Short term power constraint
 - Long term power constraint
- Delayed noisy feedback

Techniques studied:

- Uniform spatial power allocaton
- Beamforming to the delayed channel feedback
- Optimal spatial power allocation

Channel State Information (CSI) assumptions

- Perfect CSI at the receiver (CSIR): h
- CSI at the transmitter (CSIT): h_{old}, a delayed version of h
- Channel correlation is a zeroth-order Bessel function of the First kind $(J_0(x))$

$$E\left[h_i^{(t)}\left(h_i^{(t+\Delta t)}\right)^*\right] = J_0(\omega_d \Delta t) = \rho, \tag{2}$$

where ω_d is the Doppler frequency and Δt is the delay.

• For a Gaussian h, delayed feedback can be modeled as

$$\mathbf{h} = \rho \mathbf{h}_{old} + \sqrt{1 - \rho^2} \mathbf{w} \tag{3}$$

Short term power constraint Known Results

No Temporal Power Control i.e., Transmit Power(P) is fixed.

$$I(X; Y/\mathbf{h}, \mathbf{h}_{old}) = \log(1 + P\mathbf{h}^{H}\mathbf{Q}\mathbf{h})$$
 (4)

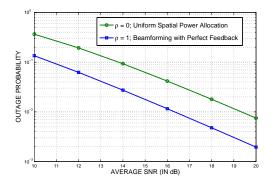
• $\rho = 0 \Rightarrow$ Uniform Spatial Power Allocation (**USPA**):

$$\mathbf{Q} = \frac{\mathbf{I}_{M \times M}}{M} \Rightarrow \mathsf{Pout}_{\mathbf{I}}(M, R, P, \rho = 0) = \Gamma_{M} \left(\frac{e^{R} - 1}{P/M} \right) \quad (5)$$

• $\rho = 1 \Rightarrow$ Beamforming (**BF**):

$$\mathbf{Q} = \frac{\mathbf{h}^H \mathbf{h}}{\mathbf{h} \mathbf{h}^H} \Rightarrow \mathsf{Pout}_{\mathbf{BF}}(M, R, P, \rho = 1) = \Gamma_M \left(\frac{e^R - 1}{P} \right) \quad (6)$$

Outage probability with Perfect Feedback and No Feedback



M = 2 Tx antennas and R = 2 nats/s/HzPerfect CSIT is $10\log_{10}M$ dB better

Problem Formulation

For $0 < \rho < 1$:

- What is the outage performance of beamforming using the imperfect CSIT?
- Is beamforming optimal?
- If not, what is the optimal spatial power allocation?

Beamforming to the imperfect CSIT

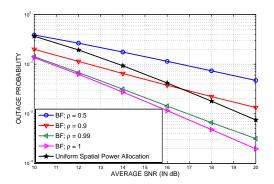
Transmitter performs beamforming along the direction of the imperfect CSIT.

- Fix \mathbf{h}_{old} and compute the outage probability $\Pr(\text{outage}|\gamma)$ for $\gamma = ||\mathbf{h}_{old}||^2$
- Expectation over h_{old} gives the average outage probability

$$\mathsf{P}_{\mathsf{outBF}}(M,R,P,\rho) = \sum_{i=1}^{M} \alpha_i \mathsf{\Gamma}_i \left(\frac{e^R - 1}{P} \right),$$

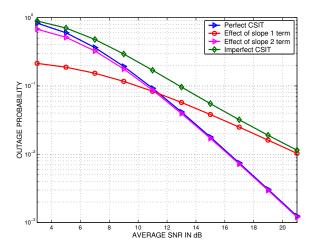
where
$$\alpha_i = \frac{1}{(1+\mu)^{M-1}} \binom{M-1}{i-1} \mu^{i-1}$$
 and $\mu = \frac{\rho^2}{1-\rho^2}$.

Outage probability with Beamforming to imperfect CSIT



 $M=2\ Tx$ antennas and $R=2\ nats/s/Hz$

Outage probability with Beamforming to imperfect CSIT



 $M=2\ Tx$ antennas and $R=2\ nats/s/Hz$

Diversity Gain

The asymptotic diversity gain at infinite SNR is defined as

$$d = -\lim_{SNR \to \infty} \frac{\log P_{out}}{\log SNR}$$
 (7)

• $0 \le \rho < 1$

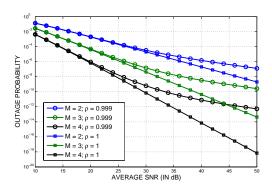
$$P_{\text{outBF}}(M, R, P \to \infty, \rho) \simeq \frac{1}{(1+\mu)^{M-1}} \left(\frac{e^R - 1}{P}\right)$$
 (8)

 $\rho = 1$

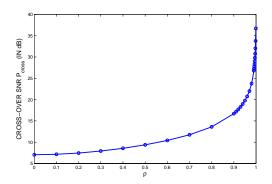
$$P_{\text{outBF}}(M, R, P \to \infty, \rho) \simeq \frac{1}{M!} \left(\frac{e^R - 1}{P}\right)^M$$
 (9)

Diversity Gain
$$d = \begin{cases} 1 & \text{for } 0 \le \rho < 1 \\ M & \text{for } \rho = 1 \end{cases}$$

Outage Probability for different values of M



Cross-over SNR



 $M=2\ Tx$ antennas and $R=2\ nats/s/Hz$

Optimal Spatial Power Allocation

Beamforming

- Total Power is spent in the direction of hold
- Not Optimal

Optimal Strategy

- Spend only a fraction (λ) of power in the direction of \mathbf{h}_{old} .
- Rest of the (M-1) orthogonal directions are identical, which share the rest of power equally.
- Find the optimal value of (λ) for each \mathbf{h}_{old} to minimize $P(\text{outage}/\mathbf{h}_{old})$

Extreme Cases

- $\rho = 0$; All directions are identical, so optimal $\lambda = \frac{1}{M}$ (USPA)
- $\rho = 1$; Perfect CSIT, so optimal $\lambda = 1$ (**BF**)

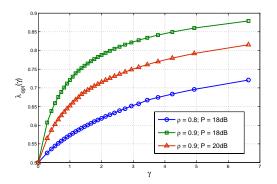
Optimal λ : $0 \le \rho \le 1$

Optimal λ as a function of γ ; $(\lambda_{opt}(\gamma))$

- $\gamma=0$, equivalent to no feedback, so $\lambda_{opt}(\gamma=0)=\frac{1}{M}$
- ullet $\gamma o \infty$, equivalent to perfect feedback, so $\lambda_{opt}(\gamma o \infty) = 1$

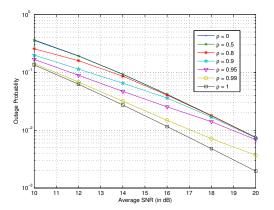
Thus, $\lambda_{opt}(\gamma)$ should start from $\frac{1}{M}$ at $\gamma=0$ and approach 1 as γ increases.

Optimal λ : $\lambda_{opt}(\gamma)$



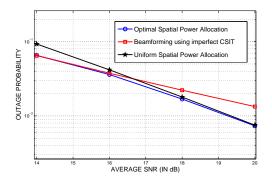
$$ho=0.9, P=18 ext{dB}, \ M=2 \ ext{and} \ R=2 \ ext{nats/s/Hz}$$

Outage probability with optimal spatial power control



$$M = 2$$
 and $R = 2$ nats/s/Hz

Comparison



$$\rho = 0.9$$
, $M = 2$ and $R = 2$ nats/s/Hz

Switching between Beamforming and Uniform Spatial Power Allocation

In practice, it would be sufficient to switch between BF and USPA.

- Optimal spatial power allocation does not improve the outage probability significantly
- ullet Any mismatch between the estimated ho and the actual ho will hurt the performance of optimal spatial power control
- Optimal spatial power allocation requires computing $\lambda_{opt}(\gamma)$ for each channel realization

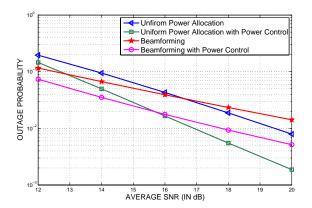
Optimal Spatio-Temporal Power Control

• Temporal power control $(p(\gamma))$ with an average power constraint: $\int_0^\infty f_{\Gamma}(\gamma)p(\gamma)d\gamma = 1$

$$\min_{p(\gamma)} \int_0^\infty f_{\Gamma}(\gamma) \min_{\lambda} \mathsf{P}_{\mathsf{out}}(\gamma, p(\gamma), \lambda) d\gamma \tag{10}$$

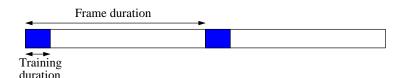
- ullet No closed form expression exists for optimal λ
- Finding the optimal $p(\gamma)$ and the corresponding λ is computationally intensive.
- Temporal power control for Uniform Spatial Power Allocation and Beamforming are considered.

Outage probability



$$\rho = 0.9$$
, $M = 2$ and $R = 2$ nats/s/Hz.

Effect of Imperfect CSIR: Training Model



- One training symbol for each transmit antenna
- MMSE channel estimate

$$\hat{\mathbf{h}} = rac{\sqrt{P_t}}{P_t + 1} \left(\sqrt{P_t} \mathbf{h} + \mathbf{n} \right)$$

• P_t = Training symbol power

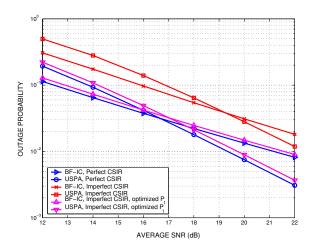
Effect of Imperfect CSIR: Upper bound on Outage Probability

Received signal model

$$y = \hat{\mathbf{h}}^H \mathbf{x} + (\mathbf{h} - \hat{\mathbf{h}})^H \mathbf{x} + n = \hat{\mathbf{h}}^H \mathbf{x} + \hat{n}$$

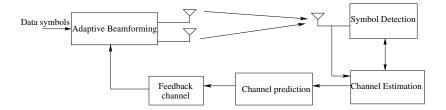
- Lower bound on $I(\mathbf{x}; y | \hat{\mathbf{h}})$
- Upper bound on $Pr(I(\mathbf{x}; y | \hat{\mathbf{h}}) < R)$
- Upper bound on P_{out} (averaged over $\hat{\mathbf{h}}$)
- Training overhead also included

Effect of Imperfect CSIR



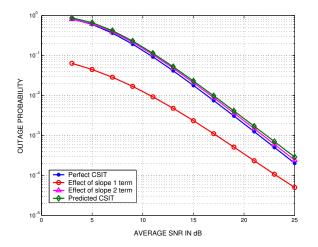
$$\rho = 0.9$$
, $M = 2$ and $R = 2$ nats/s/Hz.

Using Channel Prediction



- Prediction can combat feedback delay
- Feedback delay assumed to be known

Using Channel Prediction



M = 2, R = 2 nats/s/Hz 50 Hz Doppler, Delay = 2 ms, 10-tap Wiener prediction filter

Summary

- Beamforming in the presence of delayed feedback
 - Closed form expression for outage probability
 - Close to optimal at lower SNR
- USPA
 - For $\rho < 1$, optimal at high SNR
 - Switching between Beamforming and USPA
 - Cross-over SNR can be determined
- Optimal Spatial Power Allocation
 - Not much gain over switching between BF and USPA
- Temporal Power Control with delayed feedback
- Effect of Imperfect CSIR included
- Using channel prediction to combat feedback delay

Thank You