Cross-layer Scheduling and Resource Allocation in Wireless Communication Systems

Srikrishna Bhashyam

Department of Electrical Engineering Indian Institute of Technology Madras

2 July 2014

• = • •

Wireless Systems

Cellular System

- Time-varying channel
- Resource sharing Interference constraints

Downlink Resource Allocation Problem

- Physical resources: power and bandwidth
- Total transmit power constraint
- Maximize system throughput
- Fairness or Quality of Service (QoS) constraints

Dynamic Resource Allocation

- Resources: Time, Bandwidth, Power
- Adaptation to channel and traffic conditions
- Dynamic resource allocation
 - Reallocation period of the order of a millisecond

Adapting to the Channel

・ロト ・回ト ・ヨト ・ヨ

Adapting to the Channel: Maximizing Capacity¹

- Infinite backlog assumption
- All power and bandwidth resources to one user
- User with best achievable rate chosen: $i = \arg \max R_k$, where R_k is

the rate that can be supported by user k.

Srikrishna Bhashyam (IIT Madras)

¹R. Knopp, P. Humblet, "Information Capacity and power control in single cell multiuser communications," in *Proc. IEEE ICC, Seattle, WA*, vol. 1, pp. 331-335, June 1995.

Maximizing Capacity: Parallel Channels

Parallel Channels to each user

- Bandwidth resources split to achieve parallel channels
- For each channel *n*, user with best channel conditions chosen:

$$i_n = \arg \max_k R_{k,n}.$$

Water-filling power allocation

→ Ξ →

Fairness

Proportional Fairness^{2 3}

•
$$i = \arg\max_k \frac{R_k}{R_{k,av}}$$
,

where $R_{k,av}$ is the average rate that can be supported by user k.

• max $\sum_k \log(T_k)$,

where T_k is the average long-term throughput of user k.

Srikrishna Bhashyam (IIT Madras)

²E. F. Chaponniere, P. Black, J. M. Holtzman, and D. Tse, "Transmitter directed multiple receiver system using path diversity to equitably maximize throughput," U. S. Patent No. 6449490, September 2002.

³P. Viswanath, D. N. C. Tse, R. Laroia, "Opportunistic beamforming using dumb antennas," *IEEE Transactions on Information Theory*, vol. 48, no. 6, pp. 1277-1294, June 2002.

Parallel Channels: OFDM^{4 5}

- Available resources:
 - Subcarriers
 - Transmit power

• Channel is frequency-selective \Rightarrow subcarriers not identical.

⁴C. Y. Wong, R. S. Cheng, K. B. Letaief, R. D. Murch, "Multiuser OFDM with Adaptive Subcarrier, Bit, and Power Allocation", *IEEE Journal on Selected Areas in Communications*, vol. 17, no. 10, pp. 1747-1758, October 1999.

Srikrishna Bhashyam (IIT Madras)

Fairness: Joint Subchannel and Power Allocation

- Proportional rate subcarrier allocation⁶
- Proportional rate subcarrier allocation + power optimization⁷
- Joint subcarrier and power allocation⁸
- Utility Maximization⁹

⁶W. Rhee, J. M. Cioffi, "Increase in Capacity of Multiuser OFDM System Using Dynamic Subchannel Allocation", Proceedings of the 51st IEEE Vehicular Technology Conference, Tokyo, vol. 2, pp. 1085-1089, Spring 2000.

⁷Z. Shen, J. G. Andrews, B. L. Evans, "Adaptive Resource Allocation in Multiuser OFDM Systems with Proportional Rate Constraints", *IEEE Transactions on Wireless Communications*, vol. 4, no. 6, pp. 2726-2737, November 2005.

⁸C. Mohanram, S. Bhashyam, "A sub-optimal joint subcarrier and power allocation algorithm," *IEEE Communications Letters*, vol. 9, no. 8, pp. 685-687, August 2005.

Fairness: Joint Subchannel and Power Allocation

Gradient Algorithm

 ${
m Stolyar^{10}}$

- General utility functions
- Multiuser scheduling at the same time
- Proportional Fairness is a special case

Srikrishna Bhashyam (IIT Madras)

¹⁰A. L. Stolyar, "On the asymptotic optimality of the gradient scheduling for multi-user throughput allocation," *Operations Research*, vol. 53, no. 1, pp. 12-25, 2005.

Adapting to the Channel and Traffic

(日) (日) (日) (日)

Adapting to the Channel and Traffic¹¹

Multi-Queue Multi-Server Model for each time slot
Server: Subcarrier/Group of subcarriers/Spreading code

11 M. Andrews, K. Kumaran, K. Ramanan, A. L. Stolyar, R. Vijayakumar, P. Whiting, "Providing quality of service over a shared wireless link," *IEEE Communications Magazine*, vol. 39, no. 2, pp. 150-154, Feb 2001

Srikrishna Bhashyam (IIT Madras)

Resource Allocation/Cross-layer Scheduling Goals

Scheduling Goals

- Stability and throughput optimality
 - ★ Stability: Average queue length finite
- Packet delay constraints
- Fairness

.

π_1 is a policy in \mathcal{P} .

イロト イ団ト イヨト イヨト

π_1, π_2 and π_3 are policies in \mathcal{P} .

-

・ロト ・日下 ・ 日下

π_1, π_2 and π_3 are policies in \mathcal{P} .

∃ →

・ロト ・ 日 ト ・ 田 ト ・

π^* is a throughput optimal policy in \mathcal{P} .

Image: A match a ma

Stability in a general wireless network

• Dynamic backpressure policy¹² ¹³

- Interference model: Only certain links can be activated simultaneously
- Scheduling problem: Which links will you activate?
- Solution: Activate those links such that the sum of their weights is maximum.

¹²L. Tassiulas, A. Ephremides, "Stability properties of constrained queueing systems and scheduling for maximum throughput in multihop radio networks," *IEEE Transactions on Automatic Control*, vol. 37, no. 12, pp. 1936-1949, December 1992.

¹³L. Georgiadis, M. J. Neely, L. Tassiulas, "Resource allocation and cross-layer control in wireless networks," Foundations and Trends in Networking, vol. 1, no. 1, pp. 1-144, 2006.

Dynamic back-pressure policy for our setting Max-Weight Scheduling

Only one link per server to be activated. Which links to activate?
Solution:

- Make the servers as destination nodes.
- Assign the weights for each link as in back-pressure policy.
- Activate those links such that the sum of their weights is maximum.

$$\max \sum_k b_n C_{nk}$$

 b_n : Backlog of user n, C_{nk} : Capacity of user n on server $k \in \mathbb{R}$

2 July 2014 19 / 51

Joint Server and Power Allocation

- Finite number of power levels
 - Max-weight scheduling
- Joint subcarrier and power allocation
 - Joint optimization
 - Sub-optimal solutions¹⁴

¹⁴C. Mohanram, S. Bhashyam, "Joint subcarrier and power allocation in channel-aware queue-aware scheduling for multiuser OFDM," *IEEE Transactions on Wireless Communications*, vol. 6, no. 9, September 2007. < ≡ > < ≣ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡ > < ≡

Results: Max. Arrival Rate vs. Transmit Power

- Max. arrival rate for less than 0.5% packets dropped
- CAO: Channel-aware only, CAQA: Channel-aware Queue-aware
- FPA: Fixed power allocation, JSPA: Joint subcarrier and power 🗉 👁 🔍

Srikrishna Bhashyam (IIT Madras)

2 July 2014 21 / 51

Results: Delay Performance

• Best and worst delay performance among users plotted.

Fairness and Utility Maximization¹⁵

• Arrival rate vector outside stability region

- Support a fraction of the traffic
- Optimize utility based on long term throughput
- ► Flow control to get stabilizable rates + stabilizing policy
- Fairness based on choice of utility function
 - * Proportional fairness

Srikrishna Bhashyam (IIT Madras)

2 July 2014 23 / 51

¹⁵L. Georgiadis, M. J. Neely, L. Tassiulas, "Resource allocation and cross-layer control in wireless networks," *Foundations and Trends in Networking*, vol. 1, no. 1, pp. 1-144, 2006.

Adapting with Partial Information Infrequent measurements

C. Manikandan, S. Bhashyam, R. Sundaresan, "Cross-layer scheduling with infrequent channel and queue measurements," IEEE Transactions on Wireless Communications, vol. 8, no. 12, pp. 5737-5742, December 2009.

Using Delayed Information

- Time-slots are grouped into intervals
- Channel and queue information available only once in T slots

(日) (同) (三) (三)

Channel model

- C_{nk} : channel capacity of user *n* on server *k*.
- $C_{nk} \in \{0, 1, 2, 3\}.$

-

Image: A image: A

Loss model

- R_{nk} : number of packets user *n* transmits on server *k*.
- $C_{nk}(T-1)$: channel information available at the start of I^{th} interval.

< ロ > < 同 > < 三 > < 三

Scheduling with infrequent measurements

- Retain throughput optimality of dynamic backpressure policy
- Two policies: Policy 1 and Policy 2¹⁷
- Comparison with KLS policy¹⁸
- Delayed network-state information¹⁹

¹⁷ C. Manikandan, S. Bhashyam, R. Sundaresan, "Cross-layer scheduling with infrequent channel and queue measurements," *IEEE Transactions on Wireless Communications*, vol. 8, no. 12, pp. 5737-5742, December 2009.

¹⁸K. Kar, X. Luo, S. Sarkar, "Throughput-optimal scheduling in multichannel access point networks under infrequent channel measurements," *IEEE Transactions on Wireless Communications*, vol. 7, no. 7, pp. 2619-2629, July 2008.

¹⁹L. Ying and S. Shakkottai, On throughput optimality with delayed network-state information, IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5116–5132, 2011.

Policy 1 & Policy 2

Define
$$\widetilde{C}_{nk} = \max E \left[T_{nk}(t) | C_{nk}(lT-1) \right]$$

= $\max_r r \Pr\{r \le C_{nk} | C_{nk}(lT-1)\}$

- Policy 1 is the dynamic back pressure policy for our setting
- Assignment changes every slot
- Policy 2: Update queue information after each server is scheduled

Srikrishna Bhashyam (IIT Madras)

Simulation setup

- Truncated Poisson arrivals
- 128 users and 16 servers
- Markov fading channel with probability transition matrix
- Backlog and delay are used as metrics for comparison
- Simulations for both symmetric and asymmetric arrivals
 - Symmetric case shown here

Average backlog comparison: Slow fading, T = 8

- All the policies have similar stability region.
- At low traffic, proposed policies outperform KLS policy.

Delay comparison

• Net arrival rate = 25.6, T = 4

(日) (同) (三) (三)

Average backlog comparison vs T for Policy 2

< 🗇 🕨 < 🖃 🕨

Comparison of stability regions: Fast fading

- 2 queues, 1 server, T = 2, states are $\{0, 1\}$
- Probability transition matrix: $\begin{bmatrix} \delta & 1-\delta \\ 1-\delta & \delta \end{bmatrix}$, $\delta = 0.1$

Srikrishna Bhashyam (IIT Madras)

Adapting with Partial Information Best M sub-band feedback in LTE

H. Ahmed, K. Jagannathan, S. Bhashyam, "Queue-Aware Optimal Resource Allocation for the LTE Downlink," Proceedings of IEEE GLOBECOM 2013, Atlanta, GA, USA, Dec. 2013.

Srikrishna Bhashyam (IIT Madras)

2 July 2014 35 / 51

Resource Allocation for the LTE Downlink

Resources

- OFDM with hundreds of sub-carriers (512, 1024, 2048)
- Group of 12 sub-carriers Resource Block (RB)
- Sub-band one to three RBs
- K users, N sub-bands, γ_i^j SNR for i^{th} user in j^{th} sub-band

Components of Resource Allocation

- Sub-band Assignment
- Rate allocation
- Power allocation

- For Optimal allocation, perfect CQI is needed at the BS:
 - ► *N* bands for each of the *K* users
 - HUGE amount of feedback!

UE-selected sub-band feedback mode (3GPP)

• Limited feedback

 Index set I_i : The indices of the M best sub-bands of the ith user

 $I_i = \{i_1, i_2, \ldots, i_M\}$

• Effective Exponential SNR Mapping (EESM) γ_i^{eff} :

$$\gamma_i^{ extsf{eff}} = -\eta \ln \left(rac{1}{M} \sum_{j=1}^M e^{-rac{\gamma_i^{j_j}}{\eta}}
ight)$$

Say N = 43 and M = 4. Huge reduction in feedback overhead

Problem Setup

Goal: Find a resource allocation policy that maximizes throughput while keeping all the queues stable given the following limited information:

- The EESMs $\underline{\gamma}^{\textit{eff}} = [\gamma_1^{\textit{eff}}, \gamma_2^{\textit{eff}}, \ldots, \gamma_K^{\textit{eff}}]$
- The index sets $\underline{I} = [I_1, I_2, \dots, I_K]$
- The queue length vector $\underline{Q} = [Q_1, Q_2, \dots, Q_K]$.

Let \mathcal{P} be the family of all policies which allocate equal power to all scheduled sub-bands, and have access only to the parameters $\underline{\gamma}^{\text{eff}}, \underline{I}$, and \underline{Q} .

くほと くほと くほと

Impact of Limited Feedback - Outage

Outage Probability $P_{i,j}()$:

Outage occurs when the allocated rate exceeds the capacity

$$P_{i,j}(r_{i,j}) = \mathbb{P}\{C_{i,j} < r_{i,j} | \gamma_i^{\text{eff}}, I_i\}$$

Goodput $G_{i,j}()$:

Average successfully transmitted amount of data for i^{th} user in j^{th} sub-band

$$G_{i,j}(r_{i,j}) = r_{i,j} (1 - P_{i,j}(r_{i,j})) + \mathbf{0} \times P_{i,j}(r_{i,j})$$

< 回 ト < 三 ト < 三 ト

Methodology Used

- Lyapunov stability analysis
 - Minimizing the Lyapunov drift
 - Formulated this as a convex optimization problem
 - Solution using KKT conditions
- Calculation of Outage probability
 - Using a weak limit theorem on order statistics of sub-band SNRs²¹

²¹T. Ferguson, A Course in Large Sample Theory: Texts in Statistical Science, Chapman & Hall/CRC, 1996.

During each time slot, the scheduler at the BS observes $\underline{\gamma}^{e\!f\!f}, \underline{l}$, and \underline{Q} , and implements the following steps :

Rate and User allocation for a sub-band :

- Find the users which reported this sub-band
- Calculate the optimum rate which maximizes the goodput for each of these users
- Pick the user with the maximum queue-length goodput product
- Assign the sub-band to this user and transmit at its optimum rate

(人間) システン ステン・ ラ

Image: A match a ma

Image: A match a ma

Simulation Results

- Validity of our limiting approximation in case of both i.i.d. and correlated sub-band SNRs
- Comparison of average backlog for various policies
 - Optimal Max (Queue-length × Goodput)
 - Heuristic 1 Max (Queue-length × EESM)
 - ▶ Heuristic 2 Max (Queue-length × Estimate of CQI given EESM)
 - PF Max (Goodput/average rate)
 - Perfect CQI Max (Queue-length × CQI)

A D A D A D A

Comparison of various policies (M=3, i.i.d.)

Srikrishna Bhashyam (IIT Madras)

2 July 2014 45 / 51

Comparison of various policies (M=3, non i.i.d.)

Observations

- Policy naturally decouples for each sub-band (does not need solving any computationally intensive matching problems)
- Throughput optimality using Lyapunov stability framework
- Novel statistical model for EESM using a weak limit theorem
- Model for EESM valid for a larger class of sub-band SNR distribution (those which lie within the Gumbel domain of attraction)

Summary

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Summary

- Adapting to the channel
- Adapting to the channel and traffic
 - Max-weight Scheduling
- Adapting to partial information
 - Conditional expected rate
 - Outage

→ Ξ →

Other Work

- Countering strategic behavior²²
- Advanced physical layer options
 - Scheduling for cooperative base-stations²³
 - Interference avoidance vs. Interference processing
- Distributed scheduling
 - Using local information only

http://www.ee.iitm.ac.in/~skrishna/research.html

Srikrishna Bhashyam (IIT Madras)

²²A. K. Chorppath, S. Bhashyam, R. Sundaresan, "A convex optimization framework for almost budget balanced allocation of a divisible good," IEEE Transactions on Automation Science and Engineering, vol.8, no.3, pp.520-531, July 2011.

²³ M. R. Ramesh Kumar, S. Bhashyam, D. Jalihal, "Downlink Performance of 2-Cell Cooperation Schemes in a Multi-Cell Environment," Proceedings of WPMC 2008, Lapland, Finland, September 2008.

Acknowledgements

- Rajesh Sundaresan
- Krishna Jagannathan
- Chandrashekar Mohanram (MS)
- C. Manikandan (MS)
- Hussam Ahmed (MTech)
- Parimal Parag (DD-MTech)

• Department of Science and Technology