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Motivation

Fair sharing of internet resources

Auctioning a public resource

x x x
Efficient allocation depends on privately held information

How can we counter strategic behavior and be efficient?

Not interested in maximizing revenue
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A divisible resource (or good)
Can be split in arbitrary sized parts

a1 a2

a3
a4

a1 a2

a3
a4

Agent 3 Agent 4Agent 2Agent 1
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What is an efficient allocation?

ai

vi(ai) or vi(ai, θi)
a2

√
a1

log(1 + a3)

0.5 log(1 + a4)

0.5 1

Allocate resource such that sum valuation is maximized

max
{ai}

n∑

i=1

[Valuation of agent i ]
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Private Information: Two Scenarios

Unknown parameter in valuation functions: Agent’s valuation
function known to social planner except for scalar parameter

e.g. vi (ai , θi ) = θi log(1 + ai ), θi is private information for agent i

Unknown valuation functions: Agent’s full valuation function not
known to social planner and other agents

e.g. vi (ai ) =
√
ai and vi (ai ) is private information for agent i

Social planner needs to extract private information to achieve efficiency.

Agents can be strategic.
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Pricing mechanism to allocate resource

Decide {ai}, {pi(θ̂)}
Social planner

v2(a2, θ2)− p2(θ̂)
Agent 2

θ̂2 a2

v1(a1, θ1)− p1(θ̂)
Agent 1

θ̂1

a1

· · · vn(an, θn)− pn(θ̂)
Agent n

θ̂n

an

Agent i reports (bids) θ̂i

Social planner allocates ai to agent i and collects payment pi (θ̂)

Agents know the algorithm used by social planner

Quasi-linear setting
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Budget balance

Budget surplus: Sum of payments

n∑

i=1

pi (θ̂)

Strong budget balance: Budget surplus = 0

Weak budget balance: Budget surplus > 0

Notions of almost budget balance to be defined later
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Our work

Design mechanism (algorithm used by social planner) to achieve:
I Efficiency (despite strategic behavior)
I Almost budget balance

Two scenarios
I Unknown parameter in valuation functions
I Unknown valuation functions

Approach
I Formulate mechanism design as a convex optimization problem
I Approximate solutions with closeness guarantee
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Unknown parameter in valuations
vi(ai , θi)
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Setting

n agents

vi (ai , θi ): Valuation function of agent i

θi ∈ [0, 1], Θ = [0, 1]n

vi (·, θi ) is concave, non-decreasing, vi (ai , 0) = 0

Example: θi log(1 + ai )
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Example: Max-weight scheduling

max
n∑

i=1

θ̂iri

Social planner

θ2r2 − p2(θ̂)

Agent 2

θ̂2 a2

θ1r1 − p1(θ̂)

Agent 1

θ̂1

a1

· · · θnrn − pn(θ̂)

Agent n

θ̂n

an

(Normalized) Queue length θi , Instantaneous rate ri
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Vickrey-Clarke-Groves (VCG) Mechanism2 3 4

Social planner maximizes
∑

i

vi (ai , θ̂i ) to get {a∗i }

Payment for agent i

pi (θ̂) = −
∑

j 6=i

vj(a
∗
j , θ̂j) + hi (θ̂−i ),

where
hi (θ̂−i ) =

∑

j 6=i

vj(a
∗
−i ,j , θ̂j)

θ̂−i : Vector of bids of all agents except agent i

{a∗−i ,j}: Allocation when agent i does not participate

2
W. Vickrey, Counterspeculation, auctions, and competitive sealed tenders, The Journal of Finance, vol. 16, no. 1, pp. 8-37,

1961.
3

E. Clarke, Multipart pricing of public goods, Public Choice, vol. 2, pp. 19-33, 1971.
4

T. Groves, Incentives in teams, Econometrica, vol. 41, no. 4, pp. 617-631, 1973.
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Vickrey-Clarke-Groves (VCG) Mechanism

max
n∑

i=1

vi(ai, θi)

Social planner

v2(a2, θ2)− p2(θ)

Agent 2

θ2 a2

v1(a1, θ1)− p1(θ)

Agent 1

θ1

a1

· · · vn(an, θn)− pn(θ)

Agent n

θn

an

Agent i ’s best strategy θ̂i = θi regardless of strategies of other agents

Mechanism is dominant strategy incentive compatible (DSIC)

Mechanism is efficient

Replace θ̂i by θi henceforth
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Budget balance and rebates

Strong budget balance not possible in general5

To reduce budget surplus: Redistribute payments as rebates

Payment for agent i : pi (θ) = pVCG ,i (θ)− ri (θ−i )

Mechanism is still in the VCG class =⇒ Efficient

Rebates for discrete (indivisible) goods
I Guo & Conitzer6 and Moulin7

5
J. Green, J.-J Laffont, Characterization of satisfactory mechanisms for the revelation of preferences for public goods,

Econometrica, vol. 45, pp. 427-438, 1977.
6

M. Guo and V. Conitzer, Worst-case optimal redistribution of VCG payments in multi-unit auctions, Games and Economic
Behavior, vol. 67, no. 1, pp. 69-98, September 2009.

7
H. Moulin, Almost budget-balanced VCG mechanisms to assign multiple objects, Journal of Economic Theory, vol. 144,

no. 1, pp.96-119, January 2009.
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Rebates: Desired properties

Feasibility (F) or Weak budget balance

∑

i

pi (θ) > 0

Voluntary participation (VP)

vi (a
∗
i , θi )− pi (θ) ≥ 0 ∀i ,

assuming payoff for not participating in mechanism is 0
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Rebates: Desired properties

Deterministic and anonymous rebates
I Two agents with identical bids get identical rebates

Rebates a deterministic function of the ordered bids8

ri (θ−i ) = g((θ−i )[1], (θ−i )[2], . . . , (θ−i )[n−1])

8
M. Guo, V. Conitzer, Worst-case optimal redistribution of VCG payments in multi-unit auctions, Games and Economic

Behavior, vol. 67, pp. 69-98, Sep. 2009.

Srikrishna Bhashyam (IIT Madras) Almost Budget Balanced Mechanisms 13 Dec 2013 16 / 50



Notions of almost budget balance

Worst-case design

Moulin: Minimize the worst-case ratio of the sum of payments to the
sum of valuations

min sup
θ∈Θ

pV (θ)−∑n
i=1 ri (θ−i )

σV (θ)

Guo & Conitzer: Maximize the worst-case ratio of sum of rebates to
sum of payments

max inf
θ∈Θ

∑n
i=1 ri (θ−i )

pV (θ)

Sum of valuations: σV (θ) =
∑n

i=1 vi (a
∗
i , θi )

Sum of VCG payments: pV (θ) =
∑n

i=1 pVCG ,i (θ)
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Almost budget balance and linear rebates

Discrete good case9 10

I Both notions yield same optimal rebates
I Linear rebates are optimal

ri (θ−i ) = c0 + c1(θ−i )[1] + c2(θ−i )[2] + · · ·+ cn−1(θ−i )[n−1]

Divisible good case
I We use Moulin’s notion of almost budget balance
I Restrict ourselves to linear rebates
I Optimality of linear rebates not yet explored
I Objective function depends only on ordered bids: Assume agents are

ordered according to bids

ri (θ−i ) = c0 + c1θ1 + · · ·+ ci−1θi−1 + ci+1θi+1 + · · ·+ cn−1θn

I Θ̂ = {θ ∈ Θ|1 ≥ θ1 ≥ θ2 ≥ · · · ≥ θn ≥ 0}
9

M. Guo, V. Conitzer, Worst-case optimal redistribution of VCG payments in multi-unit auctions, Games and Economic
Behavior, vol. 67, pp. 69-98, Sep. 2009.

10
S. Gujar, Y. Narahari, Redistribution mechanisms for assignment of heterogeneous objects, Journal of Artificial Intelligence

Research, vol. 41, pp. 131-154, 2011.
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Optimization problem to design rebates

min
{ci}

sup
θ∈Θ̂

pV (θ)−∑n
i=1 ri (θ−i )

σV (θ)

subject to:

(F) Feasibility constraints

∑

i

ri (θ−i ) ≤ pV (θ) ∀θ ∈ Θ̂

(VP) Voluntary Participation constraints ∀i

ri (θ−i ) ≥ −vi (a∗i , θi ) + pVCG ,i (θ)
4
= ni (θ) ∀θ ∈ Θ̂
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With linear rebates

Note that
∑

i

ri (θ−i ) = nc0 +
n−1∑

i=1

ci (iθi+1 + (n − i)θi )

Problem with linear rebates

min
{ci}

sup
θ∈Θ̂

pV (θ)−∑n−1
i=0 ci (iθi+1 + (n − i)θi )

σV (θ)

subject to:

(F) nc0 +
n−1∑

i=1

ci (iθi+1 + (n − i)θi ) ≤ pV (θ) ∀θ ∈ Θ̂

(VP) c0+
i−1∑

j=1

cjθj+
n∑

j=i+1

cjθj ≥ −vi (a∗i , θi )+pVCG ,i (θ) = ni (θ) ∀θ ∈ Θ̂ ∀i

Srikrishna Bhashyam (IIT Madras) Almost Budget Balanced Mechanisms 13 Dec 2013 20 / 50



Simplification 1

Some good choices of θ are ek = (1, · · · , 1, 0, · · · , 0) with k ones, for
k = 0, 1, · · · , n
Using the ek ’s in (F) and (VP): c0 = c1 = 0

(VP) constraints equivalent to:

k∑

i=2

ci ≥ 0 ∀k = 2, 3, · · · , n − 1

Srikrishna Bhashyam (IIT Madras) Almost Budget Balanced Mechanisms 13 Dec 2013 21 / 50



Simplification 2

L = sup
θ∈Θ̂

pV (θ)−∑n−1
i=2 ci (iθi+1 + (n − i)θi )

σV (θ)

is equivalent to saying that:

L is the smallest number such that:

n−1∑

i=2

ci (iθi+1 + (n − i)θi ) + LσV (θ) ≥ pV (θ) ∀θ ∈ Θ̂
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Uncertain convex program: WoCLP

min
{ci},L

L

subject to:

(F) Feasibility constraints

n−1∑

i=2

ci (iθi+1 + (n − i)θi ) ≤ pV (θ) ∀θ ∈ Θ̂

(VP) Voluntary Participation constraints ∀i
k∑

i=2

ci ≥ 0 ∀k = 2, 3, · · · , n − 1

(W)
n−1∑

i=2

ci (iθi+1 + (n − i)θi ) + LσV (θ) ≥ pV (θ) ∀θ ∈ Θ̂
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Another notion of almost budget balance: OpELP

Optimal-in-expectation design11

Assume a prior distribution on the private information

Minimize the ratio of expected budget surplus to expected sum of
valuations

Equivalent to maximizing expected sum of rebates

E

[∑

i

ri (θ−i )

]

subject to (F) and (VP) constraints

11
M.Guo, V. Conitzer, Optimal-in-Expectation Redistribution Mechanisms, Proc. of 7th Int. Conf. on Autonomous Agents

and Multiagent Systems (AAMAS 2008), Padgham, Parkes, Muller and Parsons (eds.), May 12-16, 2008, Estoril, Portugal.
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OpELP

max
{ci}

n−1∑

i=2

ci (iE[θi+1] + (n − i)E[θi ])

subject to:

(F) Feasibility constraints

n−1∑

i=2

ci (iθi+1 + (n − i)θi ) ≤ pV (θ) ∀θ ∈ Θ̂

(VP) Voluntary Participation constraints ∀i

k∑

i=2

ci ≥ 0 ∀k = 2, 3, · · · , n − 1
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Unknown valuations
vi(ai)
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Setting

n agents

vi (ai ): Valuation function of agent i
I Unknown to social planner

Social planner announces a scalar-parametrized surrogate valuation
function set

{v(·, θ), θ ∈ [0,∞)}
Concave, strictly increasing, continuous, continuously differentiable

More assumptions on vi (·), v(a, θ)
I For existence of efficient Nash equilibrium
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Scalar Strategy VCG (SSVCG) mechanism12 13

max
n∑

i=1

v(ai, θi)

Social planner

v2(a2)− p2(θ)

Agent 2

θ2 a2

v1(a1)− p1(θ)

Agent 1

θ1

a1

· · · vn(an)− pn(θ)

Agent n

θn

an

Efficient DSIC mechanism not possible

Efficient Nash equilibria exist
12

S. Yang, B. Hajek, VCG-Kelly mechanisms for divisible goods: Adapting VCG mechanisms to one-dimensional signals,
IEEE JSAC, vol. 25, no. 6, pp. 1237-1243, Aug. 2007.

13
R. Johari, J. N. Tsitsiklis, Efficiency of scalar-parametrized mechanisms, Operations Research, vol. 57, no. 4, pp. 823-839,

2009.

Srikrishna Bhashyam (IIT Madras) Almost Budget Balanced Mechanisms 13 Dec 2013 28 / 50



Scalar Strategy VCG (SSVCG) mechanism

At least two agents have infinite marginal valuation at 0

v
′
i (0) = v

′
j (0) =∞

for some agents i , j with i 6= j

For every γ ∈ (0,∞) and a ≥ 0, there exists a θ > 0 such that

v
′
(a, θ) = γ

(derivative with respect to a)

Need a rich enough surrogate valuation function class
Example: v(ai , θi ) = θia

x
i , x < 1
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Rebates and desired constraints

Payment for agent i

pi (θ) = −
∑

j 6=i

v(a∗j , θj) +
∑

j 6=i

v(a∗−i ,j , θj)− ri (θ)

Rebates with following properties:

Feasibility (F) or weak budget balance:

n∑

i=1

pi (θ) ≥ 0 =⇒
n∑

i=1

ri (θ) ≤ pV (θ)

Voluntary participation (VP): Agents better off by participating.

vi (a
∗
i )− pi (θ) ≥ 0 =⇒ ri (θ) ≥ ni (θ)

Deterministic and anonymous
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Problem formulation - Almost budget balanced SSVCG
Mechanism
Worst case problem:

min
r

sup
θ∈Θne

f (r , θ)

(F)
n∑

i=1

ri (θ−i ) ≤ pVCG (θ) ∀θ ∈ Θne

(VP) ri (θ−i ) ≥ ni (θ) ∀θ ∈ Θne , i ,

pVCG (θ) = sum payment without rebates
ni (θ) = −vi (a∗i )−∑

j 6=i v(a∗j , θj) +
∑

j 6=i v(a∗−i ,j , θj)

Three difficulties in problem formulation

1) Characterizing the Nash equilibria set Θne

2) Dependency of (VP) constraints on true valuations

3) Choosing the appropriate objective function f (r , θ)
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1) Characterizing the Nash equilibria set

Θne =
⋃
{(vi )}{Nash equilibria for valuations (vi )}

For a given surrogate function v(a, θ), the set Θne = [0,∞)n

Outline of argument:

If vi (ai ) ∈ {v(a, θ)|θ > 0} for some θ = αi , then mechanism reduces
to VCG mechanism

(α1, . . . , αn) is a Nash equilbrium

Choosing various valuations will give all of [0,∞)n
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2) Simplifying the (VP) constraints

If vi (0) = 0 ∀i and v(a, 0) = 0, following are equivalent

(a) ri (θ−i ) ≥ ni (θ) ∀i , θ ∈ Θne

(b)
k∑

i=2

ci ≥ 0 ∀k = 2, 3, . . . , n − 1

Removes true valuations

Reduces to a finite number of constraints
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3) Choosing the appropriate objective

sum of payments

sum of valuations
14 has unknown true valuations

Sum of payments gives infinity in the worst case

sum of rebates

sum VCG payment
15 cannot give closeness guarantee

∑
pi (θ)∑
θi

I For v(a, θ) = θf (a), it minimizes sum payments for normalized
equilibria

I Provides closeness guarantee

14
H. Moulin, Almost budget-balanced VCG mechanisms to assign multiple objects, JET, 2009

15
M. Guo and V. Conitzer, Worst-case optimal redistribution of VCG payments in multi-unit auctions, GEB, 2009
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Worst-case problem

min
c

sup
θ∈Θne

f (c, θ)

(F)
n−1∑

i=2

ci (iθi+1 + (n − i)θi ) ≤ pVCG (θ) ∀θ ∈ Θne

(VP)
k∑

i=2

ci ≥ 0 ∀k = 2, 3, . . . , n − 1

Let L(n) = sup
θ∈Θne

f (c , θ) = sup
θ∈Θne

pVCG (θ)−∑
ri (θ−i )∑

θi
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Final optimization problem: SSVCG-WoCLP
For v(a, θ) = θf (a), we have

min
c,L(n)

L(n)

1)
n−1∑

i=2

ci (iθi+1 + (n − i)θi ) ≤ pVCG (θ) ∀θ ∈ Θs

2)
k∑

i=2

ci ≥ 0 ∀k = 2, 3, . . . , n − 1

3)
n−1∑

i=2

ci (iθi+1 + (n − i)θi ) + L(n)
n∑

i=1

θi ≥ pVCG (θ),∀θ ∈ Θs

Θs = {θ ∈ Θ|1 = θ1 ≥ θ2 ≥ · · · ≥ θn ≥ 0}
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SSVCG-OpELP

Similar to the VCG case except for Θs instead of Θ̂

max
{ci}

n−1∑

i=2

ci (iE[θi+1] + (n − i)E[θi ])

subject to:

(F) Feasibility constraints

n−1∑

i=2

ci (iθi+1 + (n − i)θi ) ≤ pV (θ) ∀θ ∈ Θs

(VP) Voluntary Participation constraints ∀i

k∑

i=2

ci ≥ 0 ∀k = 2, 3, · · · , n − 1
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Constraint Sampling
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Constraint sampling

Uncertain convex program (UCP)16 in all 4 cases

WoCLP: Need to sample (F) and (W) constraints

OpELP: Need to sample (F) constraints

Random sampling approach
I ek ’s + Random samples of θ

Two types of results
I Number of samples required to make sampled constraint set close to

actual with high probability
I Number of samples required for value of sampled problem to be close

to value of actual problem

16
G. Calafiore, M. C. Campi, Uncertain convex programs: randomized solutions and confidence levels, Mathematical

Programming – Online first, DOI 10.1007/s10107-003-0499-y, 2004
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Constraint sampling: Illustration
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Closeness guarantee

Closeness of sampled constraint set and actual constraint set17

I For a given ε, δ, number of samples m(ε, δ) such that
P[Violation probability ≤ ε] ≥ 1− δ

Closeness of value of sampled program and actual UCP
I For a given τ , number of samples m(τ) such that
|Value of SCP - Value of UCP| ≤ τ

I Two results: probabilistic guarantee, deterministic guarantee

17
G. Calafiore, M. C. Campi, Scenario approach on robust control design, IEEE Transactions on Automatic Control, vol. 51,

no. 5, pp. 742-752, 2006.
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Closeness guarantee: Results

Probabilistic guarantee

Under a Lipschitz condition on σV (θ), and a restriction on the
parameter set:18

I Number of samples m(τ, δ, ν) for the value to be τ−close with
probability ≥ 1− δ

Deterministic guarantee

Under some assumptions on the valuation functions: 19

I Example: Valuations of the form θi f (ai )
I Number of samples m(τ) for the value to be τ−close

18
A. K. Chorppath, S. Bhashyam, R. Sundaresan, ”A convex optimization framework for almost budget balanced allocation

of a divisible good,” IEEE Transactions on Automation Science and Engineering, vol.8, no.3, pp.520-531, July 2011.
19

D. Thirumulanathan, Resource allocation for strategic users, Masters’ thesis, ECE, IISc Bangalore, 2012.
http://www.ece.iisc.ernet.in/ nathan.d/project.pdf

Srikrishna Bhashyam (IIT Madras) Almost Budget Balanced Mechanisms 13 Dec 2013 42 / 50



Numerical Results
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Simulation Setup: ABB-VCG

m = 2836n random samples from Θ̂ used to generate constraints

Numerical solution: Determine approximate objective and rebate

Using numerical solution for rebates, Monte Carlo simulations for a
larger set (500,000) of θ′s

Valuation function: vi (ai , θi ) = θi log (1 + ai )
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Numerical results
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Numerical results
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Simulation Setup: ABB-SSVCG

10,000 random samples of Θs are used to generate constraints

Numerical solution: Determine approximate objective and rebate

Using numerical solution for rebates, Monte Carlo simulations for a
larger set (100,000) of θ′s

Surrogate valuation v(a, θ) = θ
√
a
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Optimal mechanism in worst-case sense
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Optimal mechanism in expected sense
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Summary: Allocation of a divisible good

Efficiency and almost budget balance

Unknown parameter case
I VCG + rebates
I Two designs: worst-case, optimal-in-expectation

Unknown valuations case
I Existence of efficient Nash equilibrium
I SSVCG + rebates
I Two designs: worst-case and optimal-in-expectation

Formulation as an uncertain convex program

Constraint sampling

Open questions

Optimality of linear rebates

Possibility of closeness guarantee with fewer samples
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