Long term power constraint

Spatial and Temporal Power Allocation for MISO Systems with Delayed Feedback

> Venkata Sreekanta Annapureddy ¹ Srikrishna Bhashyam²

¹Department of Electrical and Computer Engineering University of Illinois at Urbana Champaign vannapu2@uiuc.edu

> ²Department of Electrical Engineering Indian Institute of Technology Madras skrishna@ee.iitm.ac.in

Outline	Scope of Work	System model	Short term power constraint	Long term power constraint	
· · · ·					

Outline

1 Scope of Work

- 2 System model
- 3 Short term power constraint
 - Known Results
 - Problem Formulation
 - Beamforming
 - Optimal Spatial Power Allocation (OSPA)
- 4 Long term power constraint
 - Optimal Spatio-Temporal Power Control

5 Summary

Scope of the work

Problem considered:

 Minimize outage probability of Multiple Input Single Output (MISO) system in the presence of delayed feedback.

Cases considered:

- Short term power constraint
- Long term power constraint i.e temporal power control Techniques studied:
 - Uniform spatial power allocaton
 - Beamforming to the delayed channel feedback
 - Optimal spatial power allocation

Outline	Scope of Work	System model	Short term power constraint	Long term power constraint 00	
<u> </u>					

 $y = \mathbf{h}^{\mathsf{T}} \mathbf{x} + z$ $\mathbf{h}_{M \times 1} = \begin{bmatrix} h_1 & h_2 & \cdots & h_M \end{bmatrix}^{\mathsf{T}} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I}_{\mathsf{M} \times \mathsf{M}})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Channel State Information (CSI) assumptions

- Perfect CSI at the receiver (CSIR): h
- \bullet CSI at the transmitter (CSIT): $h_{\textit{old}},$ a delayed version of h
- Channel correlation is a zeroth-order Bessel function of the First kind (J₀(x))

$$E\left[h_{i}^{(t)}\left(h_{i}^{(t+\Delta t)}\right)^{*}\right] = \mathsf{J}_{0}(\omega_{d}\Delta t) = \rho,$$

where ω_d is the Doppler frequency and Δt is the delay.

 $\bullet\,$ For a Gaussian channel, h and $h_{\it old}$ are related as

$$\mathbf{h} = \rho \mathbf{h}_{old} + \sqrt{1 - \rho^2} \mathbf{w}$$

Short term power constraint Known Results

No Temporal Power Control i.e., Transmit Power(P) is fixed.

$$\mathsf{I}(X; Y/\mathsf{h}, \mathsf{h}_{old}) = \mathsf{log}(1 + P \mathsf{h}^H \mathbf{Q} \mathsf{h})$$

• $\rho = 0 \Rightarrow$ Uniform Spatial Power Allocation (USPA):

$$\mathbf{Q} = \frac{\mathbf{I}_{M \times M}}{M} \Rightarrow \mathsf{Pout}_{\mathbf{I}}(M, R, P, \rho = 0) = \Gamma_M\left(\frac{e^R - 1}{P/M}\right)$$

• $\rho = 1 \Rightarrow$ Beamforming (**BF**):

$$\mathbf{Q} = \frac{\mathbf{h}\mathbf{h}^{H}}{\mathbf{h}^{H}\mathbf{h}} \Rightarrow \mathsf{Pout}_{\mathsf{BF}}(M, R, P, \rho = 1) = \Gamma_{M}\left(\frac{e^{R} - 1}{P}\right)$$

Outage probability with Perfect Feedback and No Feedback

Perfect CSIT is $10\log_{10}M$ dB better

 $\mathsf{M}=2\ \mathsf{Tx}$ antennas and $\mathsf{R}=2\ \mathsf{nats}/\mathsf{s}/\mathsf{Hz}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem Formulation

For $0 < \rho < 1$:

- What is the outage performance of beamforming using the imperfect CSIT?
- Is beamforming optimal?
- If not, what is the optimal spatial power allocation?

Beamforming to the imperfect CSIT

Transmitter performs beamforming along the direction of the imperfect CSIT.

- Fix \mathbf{h}_{old} and compute the outage probability
- Expectation over \mathbf{h}_{old} gives the average outage probability

$$\mathsf{P}_{\mathsf{outBF}}(M, R, P, \rho) = \sum_{i=1}^{M} \alpha_i \Gamma_i \left(\frac{e^R - 1}{P} \right),$$

where
$$\alpha_i = \frac{1}{(1+\mu)^{M-1}} \binom{M-1}{i-1} \mu^{i-1}$$
 and $\mu = \frac{\rho^2}{1-\rho^2}$.

 $\Gamma_i\left(\frac{e^R-1}{P}\right)$ is the Outage Probability of MISO channel with *i* transmit antennas with perfect feedback.

Outline Scope of Work System model S

Short term power constraint

Long term power constraint

Summary

э

Outage probability with Beamforming to imperfect CSIT

Beamforming - better at low SNR and worse at high SNR M = 2 Tx antennas and R = 2 nats/s/Hz

Diversity Gain

The asymptotic diversity gain at infinite SNR is defined as

$$\mathsf{d} = -\lim_{\mathrm{SNR} \to \infty} \frac{\mathsf{log} \ \mathsf{P}_{\mathsf{out}}}{\mathsf{log} \ \mathsf{SNR}}$$

• $0 \le \rho < 1$

$$\mathsf{P}_{\mathsf{outBF}}(M, R, P \to \infty, \rho) \simeq rac{1}{(1+\mu)^{M-1}} \left(rac{e^R - 1}{P}
ight)$$

• $\rho = 1$

$$\mathsf{P}_{\mathsf{outBF}}(M,R,P o\infty,
ho)\simeq rac{1}{M!}\left(rac{e^R-1}{P}
ight)^M$$

Diversity Gain
$$d = \begin{cases} 1 & \text{for } 0 \le \rho < 1 \\ M & \text{for } \rho = 1 \end{cases}$$

Outline Scope of Work System model Short term power constraint

Long term power constraint S

(日)

Summary

Outage Probability for different values of M

Diversity Gain = 1, for any M and $\rho < 1$

Short term power constraint

Long term power constraint SL

Cross-over SNR

 $M=2\ Tx$ antennas and $R=2\ nats/s/Hz$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Optimal Spatial Power Allocation

Beamforming

- Total Power is spent in the direction of \mathbf{h}_{old}
- Not Optimal

Optimal Strategy

- Spend only a fraction (λ) of power in the direction of \mathbf{h}_{old} .
- Rest of the (M-1) orthogonal directions are identical, which share the rest of power equally.
- Find the optimal value of (λ) for each \mathbf{h}_{old} to minimize $P(outage/\mathbf{h}_{old})$

Extreme Cases

- $\rho = 0$; All directions are identical, so optimal $\lambda = \frac{1}{M}$ (USPA)
- $\rho = 1$; Perfect CSIT, so optimal $\lambda = 1$ (**BF**)

Short term power constraint

Optimal λ : $0 \le \rho \le 1$

Optimal λ as a function of γ ; $(\lambda_{opt}(\gamma))$; $\gamma = ||\mathbf{h}_{old}||^2$

• $\gamma = 0$, equivalent to no feedback, so $\lambda_{opt}(\gamma = 0) = \frac{1}{M}$

• $\gamma \to \infty$, equivalent to perfect feedback, so $\lambda_{opt}(\gamma \to \infty) = 1$ Thus, $\lambda_{opt}(\gamma)$ should start from $\frac{1}{M}$ at $\gamma = 0$ and approach 1 as γ increases. Outline Scope of Work System model

Short term power constraint

Long term power constraint Su

- E

Optimal λ : $\lambda_{opt}(\gamma)$

 $\rho=0.9, P=18 {\rm dB}, \; M=2 \; {\rm and} \; R=2 \; {\rm nats/s/Hz}$

 Outline
 Scope of Work
 System model
 Short term power constraint 0000000000000
 Long term power constraint
 Sum 00

Outage probability with optimal spatial power control

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

M = 2 and R = 2 nats/s/Hz

Short term power constraint

Long term power constraint

Comparison

No significant perfromance improvement with OSPA $\rho = 0.9, M = 2$ and R = 2 nats/s/Hz

In practice, it would be sufficient to switch between BF and USPA.

- Optimal spatial power allocation does not improve the outage probability significantly
- Any mismatch between the estimated ρ and the actual ρ will hurt the performance of optimal spatial power control
- Optimal spatial power allocation requires computing $\lambda_{opt}(\gamma)$ for each channel realization

Optimal Spatio-Temporal Power Control

• Temporal power control $(p(\gamma))$ with an average power constraint: $\int_0^\infty f_{\Gamma}(\gamma)p(\gamma)d\gamma = 1$

$$\min_{p(\gamma)} \int_0^\infty f_{\mathsf{F}}(\gamma) \min_{\lambda} \mathsf{P}_{\mathsf{out}}(\gamma, p(\gamma), \lambda) d\gamma$$

- No closed form expression exists for optimal λ
- Finding the optimal $p(\gamma)$ and the corresponding λ is computationally intensive.
- Temporal power control for Uniform Spatial Power Allocation and Beamforming are considered.

Outline Scope of Work System model

Short term power constraint

Long term power constraint

Outage probability

Even with temporal power control, BF is better only at low SNR $\rho = 0.9$, M = 2 and R = 2 nats/s/Hz.

Summary

Beamforming in the presence of delayed feedback

- Closed form expression for outage probability
- Close to optimal at lower SNR

USPA

- For $\rho < 1$, optimal at high SNR
- Switching between Beamforming and USPA
- Cross-over SNR can be determined

Optimal Spatial Power Allocation

- Allocate only a fraction of power in the direction of the imperfect feedback
- Not much gain over switching between BF and USPA

Temporal Power Control for Beamforming with delayed feedback

- Similar results for BF and USPA
- Optimal strategy hard to obtain

Outline	Scope of Work	System model	Short term power constraint	Long term power constraint	Summary

Thank You

◆□ → < @ → < E → < E → ○ < ○ < ○ </p>