Gaussian many-to-one channels Some sum capacity results¹

Srikrishna Bhashyam

Department of Electrical Engineering Indian Institute of Technology Madras Chennai 600036

January 1, 2016

Joint work with Ranga Prasad and A. Chockalingam (IISc)

 $^1\text{R.}$ Prasad, S. Bhashyam, A. Chockalingam, "On the Gaussian Many-to-One X Channel," IEEE Transactions on Information Theory, vol. 62, no. 1, pp. 244-259, January 2016. Ξ

1 / 44

Srikrishna Bhashyam (IIT Madras) Sum capacity of many-to-one channels January 1, 2016

Single-hop Interference Network [Carleial '78]

- K transmitters, N receivers, single-hop
- Possible message from each transmitter to each subset of receivers

$$K(2^N - 1)$$
 possible messages

Single-hop interference networks: Two special cases

Gaussian interference channel: Some known results

2-user IC

- Capacity
 - Strong interference [Carleial75, HanKob81, Sato81]
- Sum capacity
 - Mixed interference [MotKha09]
 - Noisy interference [AnnVee09, MotKha09, ShaKraChe09]

K-user IC

- Sum capacity: Noisy interference [ShaKraChe09, AnnVee09]
- Capacity region: Symmetric very strong interference [SriJafVisJaf08]

K-user Many-to-one IC

- Sum capacity: Noisy interference [CadJaf09, AnnVee09]
- Capacity region: Symmetric very strong interference [ZhuGas15]
- Special case (K = 2): One-sided IC / Z-IC [Sason04]
- This talk (Sum capacity)

Gaussian X channel: Some known results

$2\,\times\,2~\text{XC}$

• Sum capacity: Noisy interference [HuaCadJaf12]

$K \times K$ Many-to-one XC

• Special case (K = 2): ZC

- Sum capacity: Weak interference [LiuUlu04]
- Sum capacity: Strong interference [ChoMotGar07]
- Capacity region: Moderately strong interference [ChoMotGar07]
- This talk (Sum capacity)

Gaussian many-to-one channels

A 🖓 h

э

Many-to-one Channels: Motivation

- Captures some essential features (interference), easier for analysis
- Results can be used to find bounds for more general topologies
 - Bounds for 2-user IC using one-sided IC
- Approximation to a possible real scenario

3×3 Gaussian many-to-one X channel

Capacity region (5-dimensional) not easy to characterize

- One flow on each link $(R_{ij}: \text{Rate from } T \times j \text{ to } R \times i)$
- $\mathcal{C} = \text{Set}$ of all achievable $\mathbf{R} = (R_{11}, R_{22}, R_{12}, R_{33}, R_{13})$
- This talk: sum capacity

Srikrishna Bhashyam (IIT Madras)

Channel in standard form

Reduce the number of parameters required

• $\mathcal{C}(\mathbf{P}',\mathbf{h},\mathbf{N}) = \mathcal{C}_{standard}(\mathbf{P},a,b)$

• Z_i IID ~ N(0,1), **P**, **P**': power constraints, **N**: noise variance vector

< < p>< < p>

Result for the 3 \times 3 many-to-one XC

3

10 / 44

Many-to-one IC

A special case of the many-to-one XC

- Sum capacity: Noisy interference Annapureddy & Veeravalli 2009, Cadambe & Jafar 2009
- Capacity: Symmetric very strong interference Zhu & Gastpar 2015
- Capacity within a constant gap Bresler, Parekh & Tse 2010, Jovicic, Wang, & Viswanath 2010

Srikrishna Bhashyam (IIT Madras) Sum capacity of many-to-one channels

Result for the 3 \times 3 many-to-one IC

$$P_1 = P_2 = P_3 = 3\mathsf{dB}$$

Srikrishna Bhashyam (IIT Madras)

3

くほと くほと くほと

Rest of this talk

- $3\,\times\,3$ Many-to-one XC
 - Transmission strategies for the many-to-one XC
 - Treat interference from a subset of transmitters as noise
 - Use of Gaussian codebooks
 - Conditions for sum rate optimality

Extensions to K \times K Many-to-one XC

 ${\sf K}\,\times\,{\sf K}$ Many-to-one IC

Gaussian 3 \times 3 many-to-one XC

3

∃ → (∃ →

< (T) > <

Strategy M1: Treating Interference as Noise (TIN)

Achieved sum-rate

$$R_{sum} = \frac{1}{2}\log_2\left(1 + \frac{P_1}{a^2P_2 + b^2P_3 + 1}\right) + \frac{1}{2}\log_2\left(1 + P_2\right) + \frac{1}{2}\log_2\left(1 + P_3\right)$$

Strategy M2

Achieved sum-rate

$$R_{sum} = \frac{1}{2}\log_2\left(1 + \frac{P_1 + a^2 P_2}{b^2 P_3 + 1}\right) + \frac{1}{2}\log_2\left(1 + P_3\right)$$

- 4 週 1 - 4 三 1 - 4 三 1

æ

Strategy M2

Achieved sum-rate

$$R_{sum} = \frac{1}{2}\log_2\left(1 + \frac{P_1 + b^2 P_3}{a^2 P_2 + 1}\right) + \frac{1}{2}\log_2\left(1 + P_2\right)$$

Srikrishna Bhashyam (IIT Madras)

3

Strategy M3

Achieved sum-rate

$$R_{sum} = \frac{1}{2} \log_2 \left(1 + P_1 + a^2 P_2 + b^2 P_3 \right)$$

3

イロト イポト イヨト イヨト

Sum-rate optimality of Strategy M1 (TIN)

∃ →

19 / 44

Strategy M1 achieves sum capacity if $a^2 + b^2 \leq 1$

Sum-rate optimality of Strategy M2

Strategy M2 achieves sum capacity if $b^2 < 1$ and $a^2 \geq rac{(1+b^2P_3)^2}{1-b^2}$

∃ →

20 / 44

Srikrishna Bhashyam (IIT Madras) Sum capacity of many-to-one channels January 1, 2016

Approximate sum-rate optimality of Strategy M3

Strategy M3 achieves rates within

$$\frac{1}{2}\log_2\left(\frac{1-(1+b^2P_3)^{-1}\rho^2}{1-\rho^2}\right) \text{bits}$$

of sum capacity if $b^2 \geq 1$ and $a^2 \geq rac{(1+b^2P_3)^2}{
ho^2}$

Srikrishna Bhashyam (IIT Madras)

Sum-rate optimality proofs: Outline

Need an upper bound that matches achievable sum-rate

Upper bound using

- Fano's inequality
- Degraded receivers
- Worst-case additive noise result, Entropy-Power inequality (EPI)
- Genie-aided channel/Channel with side information (M2 & M3)

Degraded receivers

• If $a^2 \leq 1$, Rx 1 is a degraded version of Rx 2 w.r.t. W_{12}

$$H(W_{12}|\mathbf{y}_2^n) \leq H(W_{12}|\mathbf{y}_1^n) \leq n\epsilon_n$$

• If $b^2 \leq 1$, Rx 1 is a degraded version of Rx 3 w.r.t. W_{13}

Worst-case additive noise

•
$$\mathbf{Z}^n \sim \mathcal{N}(\mathbf{0}, \Sigma_Z)$$
 IID

• \mathbf{X}^n : average covariance constraint Σ_X

Worst case noise result (Diggavi & Cover 01, Annapureddy & Veeravalli 09)

$$h(\mathbf{X}^n) - h(\mathbf{X}^n + \mathbf{Z}^n) \le nh(\mathbf{X}_G) - nh(\mathbf{X}_G + \mathbf{Z}),$$

where $\mathbf{X}_{G} \sim \mathcal{N}(\mathbf{0}, \Sigma_{X})$.

Another result²

$$\begin{split} \sum_{i=1}^{K} h(X_i^n + Z_i^n) &- h\Big(\sum_{i=1}^{K} c_i X_i^n + Z_1^n\Big) \\ &\leq n \sum_{i=1}^{K} h(X_{iG} + Z_i) - nh\Big(\sum_{i=1}^{K} c_i X_{iG} + Z_1\Big), \\ &\text{if } \sum_{i=1}^{K} c_i^2 \leq \sigma^2 \end{split}$$

- X_i^n with power constraint $\sum_{j=1}^n \mathbb{E}[(X_{ij}^2] \le nP_i)$
- Z_1^n vector with IID $\mathcal{N}(0, \sigma^2)$ components
- Z_i^n , $i \neq 1$ vector with IID $\mathcal{N}(0,1)$ components
- X_i^n are independent of Z_i^n
- $X_{iG} \sim \mathcal{N}(0, P_i)$

²Lemma 5 from Annapureddy & Veeravalli 2009 in different form

Proof of sum-rate optimality of Strategy M1 (1)

Let S denote any achievable sum-rate. Want to show

$$S \leq I(x_{1G}; y_{1G}) + I(x_{2G}; y_{2G}) + I(x_{3G}; y_{3G}).$$

$$hS \leq H(W_{11}) + H(W_{12}, W_{22}) + H(W_{13}, W_{33})$$

$$= I(W_{11}; \mathbf{y}_{1}^{n}) + \sum_{i=2}^{3} I(W_{1i}, W_{ii}; \mathbf{y}_{i}^{n})$$

$$+ H(W_{11} | \mathbf{y}_{1}^{n}) + \sum_{i=2}^{3} H(W_{1i}, W_{ii} | \mathbf{y}_{i}^{n})$$

$$\leq I(\mathbf{x}_{1}^{n}; \mathbf{y}_{1}^{n}) + \sum_{i=2}^{3} I(\mathbf{x}_{i}^{n}; \mathbf{y}_{i}^{n})$$

$$+ H(W_{11} | \mathbf{y}_{1}^{n}) + \sum_{i=2}^{3} H(W_{1i}, W_{ii} | \mathbf{y}_{i}^{n})$$

Srikrishna Bhashyam (IIT Madras)

Sum capacity of many-to-one channels

Proof of sum-rate optimality of Strategy M1 (2)

$$nS \leq l(\mathbf{x}_{1}^{n}; \mathbf{y}_{1}^{n}) + \sum_{i=2}^{3} l(\mathbf{x}_{i}^{n}; \mathbf{y}_{i}^{n}) + H(W_{11} | \mathbf{y}_{1}^{n}) + \sum_{i=2}^{3} H(W_{1i}, W_{ii} | \mathbf{y}_{i}^{n})$$

$$\stackrel{(a)}{\leq} h(\mathbf{y}_{1}^{n}) - h(a\mathbf{x}_{2}^{n} + b\mathbf{x}_{3}^{n} + \mathbf{n}_{1}^{n}) + h(\mathbf{x}_{2}^{n} + \mathbf{n}_{2}^{n}) - h(\mathbf{n}_{2}^{n}) + h(\mathbf{x}_{3}^{n} + \mathbf{n}_{3}^{n})$$

$$-h(\mathbf{n}_{3}^{n}) + \mathbf{5}\epsilon_{n}$$

$$\stackrel{(b)}{\leq} nh(y_{1G}) - nh(ax_{2G} + bx_{3G} + n_{1}) + nh(x_{2G} + n_{2}) + nh(x_{3G} + n_{3})$$

$$-nh(n_{2}) - nh(n_{3}) + \mathbf{5}\epsilon_{n}$$

$$= nl(x_{1G}; y_{1G}) + nl(x_{2G}; y_{2G}) + nl(x_{3G}; y_{3G}) + \mathbf{5}\epsilon_{n},$$

(a): Fano's inequality,
$$a^2 \le 1$$
 and $b^2 \le 1$
(b): Generalized form of worst-case noise result, $a^2 + b^2 \le 1$

Srikrishna Bhashyam (IIT Madras) Sum capacity of many-to-one channels

Proof of sum-rate optimality of Strategy M2 (1)

Want to show $S \leq I(x_{1G}, x_{2G}; y_{1G}) + I(x_{3G}; y_{3G})$.

• Show $S \le I(x_{1G}, x_{2G}; y_{1G}, s_{1G}) + I(x_{3G}; y_{3G})$ • $E[N_1Z_1] = \rho, \ \eta > 0$ chosen later Proof of sum-rate optimality of Strategy M2 (2)

$$nS \leq H(W_{11}, W_{12}, W_{22}) + H(W_{13}, W_{33})$$

$$= I(W_{11}, W_{12}, W_{22}; \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}) + H(W_{11} | \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}) + H(W_{12} | \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}, \mathbf{x}_{1}^{n})$$

$$+ H(W_{22} | \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}, \mathbf{x}_{1}^{n}, W_{12}) + I(W_{13}, W_{33}; \mathbf{y}_{3}^{n}) + H(W_{13} | \mathbf{y}_{3}^{n})$$

$$+ H(W_{33} | \mathbf{y}_{3}^{n}, W_{13})$$

$$\leq I(\mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n}; \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}) + H(W_{11} | \mathbf{y}_{1}^{n}) + H(W_{12} | \mathbf{y}_{1}^{n})$$

$$+ H(W_{22} | \mathbf{s}_{1}^{n}, \mathbf{x}_{1}^{n}) + I(\mathbf{x}_{3}^{n}; \mathbf{y}_{3}^{n}) + H(W_{13} | \mathbf{y}_{3}^{n}) + H(W_{33} | \mathbf{y}_{3}^{n}),$$

$$\stackrel{(a)}{\leq} I(\mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n}; \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}) + I(\mathbf{x}_{3}^{n}; \mathbf{y}_{3}^{n}) + 5n\epsilon_{n} \qquad (1)$$

$$(a); n^{2} \leq a^{2} \text{ and } h^{2} \leq 1$$

< 4 ₽ > <

3

Proof of sum-rate optimality of Strategy M2 (3)

$$nS \leq l(\mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n}; \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}) + l(\mathbf{x}_{3}^{n}; \mathbf{y}_{3}^{n}) + 5n\epsilon_{n}$$

$$= l(\mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n}; \mathbf{s}_{1}^{n}) + l(\mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n}; \mathbf{y}_{1}^{n} | \mathbf{s}_{1}^{n}) + l(\mathbf{x}_{3}^{n}; \mathbf{y}_{3}^{n}) + 5n\epsilon_{n}$$

$$= h(\mathbf{s}_{1}^{n}) - h(\mathbf{s}_{1}^{n} | \mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n}) + h(\mathbf{y}_{1}^{n} | \mathbf{s}_{1}^{n})$$

$$- h(\mathbf{y}_{1}^{n} | \mathbf{s}_{1}^{n}, \mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n}) + h(\mathbf{y}_{3}^{n}) - h(\mathbf{y}_{3}^{n} | \mathbf{x}_{3}^{n}) + 5n\epsilon_{n}$$

$$\leq nh(s_{1G}) - nh(\eta z_{1}) + nh(y_{1G} | s_{1G})$$

$$- h(b \mathbf{x}_{3}^{n} + \tilde{\mathbf{n}}_{1}^{n}) + h(\mathbf{x}_{3}^{n} + \mathbf{n}_{3}^{n}) - nh(n_{3}) + 5n\epsilon_{n}$$

$$\stackrel{(b)}{\leq} nh(s_{1G}) - nh(\eta z_{1}) + nh(y_{1G} | s_{1G})$$

$$- nh(b x_{3G} + \tilde{n}_{1}) + nh(x_{3G} + n_{3}) - nh(n_{3}) + 5n\epsilon_{n}$$

$$= nl(x_{1G}, x_{2G}; y_{1G}, s_{1G}) + nl(x_{3G}; y_{3G}) + 5n\epsilon_{n},$$

(b): $b^2 \leq 1 - \rho^2$

- ▲ 17

Proof of sum-rate optimality of Strategy M2 (4)

Choose

$$\eta \rho = 1 + b^2 P_3$$

to get

$$I(x_{1G}, x_{2G}; y_{1G}, s_{1G}) = I(x_{1G}, x_{2G}; y_{1G})$$

Then, choose

$$\rho^2 = 1 - b^2$$

to get the final result

$$b^2 < 1$$
 and $a^2 \ge rac{(1+b^2P_3)^2}{1-b^2}$

3

Back to the numerical result

•
$$P_1 = P_2 = P_3 = 0 \text{ dB}$$

Srikrishna Bhashyam (IIT Madras)

3

A D A D A D A

Gaussian $K \times K$ many-to-one XC

3

-

< (T) > <

-

Strategy M1 for the $K \times K$ many-to-one XC

Strategy M1 achieves sum capacity if $\sum_{j=2}^{K} h_j^2 < 1$

▲ 同 ▶ → 三 ▶

Strategy M2 for the $K \times K$ many-to-one XC

Strategy M2 achieves sum capacity if

$$\sum_{=2, j \neq k}^{K} h_j^2 < 1 \text{ and } h_k^2 \geq \frac{(1 + \sum_{j=2}^{K} h_j^2 P_j)^2}{1 - \sum_{j=2, j \neq k}^{K} h_j^2}$$

Srikrishna Bhashyam (IIT Madras)

Gaussian K-user many-to-one IC

-

A 🖓

3

$K \times K$ many-to-one IC

Strategies MIk for $k = 1, 2, \ldots, K$

- Decode interference from transmitters 2 to k (for $k \ge 2$)
- Treat interference from transmitters k + 1 to K as noise

Srikrishna Bhashyam (IIT Madras)

Sum capacity of many-to-one channels

January 1, 2016 37 / 44

Strategy MI2 for the 3 \times 3 many-to-one IC (1)

Achieved sum-rate

$$R_{sum} = \frac{1}{2}\log_2\left(1 + \frac{P_1}{b^2 P_3 + 1}\right) + \frac{1}{2}\log_2\left(1 + P_2\right) + \frac{1}{2}\log_2\left(1 + P_3\right)$$

Required condition: $a^2 \ge 1 + P_1 + b^2 P_3$

Strategy MI2 for the 3 \times 3 many-to-one IC (2)

Want to show $S \leq I(x_{1G}; y_{1G}|x_{2G}) + I(x_{2G}; y_{2G}) + I(x_{3G}; y_{3G})$.

• Need $b^2 \leq 1$

Summary of conditions for 3 \times 3 many-to-one IC

Strategy	Channel conditions
$\mathcal{MI}1$	$a^2+b^2\leq 1$
$\mathcal{MI2}$	(i) $a^2 \ge 1 + P_1 + b^2 P_3, \ b^2 \le 1$
	(ii) $b^2 \ge 1 + P_1 + a^2 P_2, \ a^2 \le 1$
$\mathcal{MI3}$	(i) $a^2 \ge 1 + P_1 + b^2 P_3, \ b^2 \ge 1 + P_1$
	(ii) $b^2 \ge 1 + P_1 + a^2 P_2$, $a^2 \ge 1 + P_1$

Result for the 3 \times 3 many-to-one IC

$$P_1 = P_2 = P_3 = 3\mathsf{dB}$$

Srikrishna Bhashyam (IIT Madras)

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary

3

<ロ> (日) (日) (日) (日) (日)

Summary

Many-to-one XC

- Strategies where a subset of interfering signals are treated as noise
- Conditions for sum-rate optimality
- 3×3 case
- $K \times K$ case

Many-to-one IC

• Strategies MIk and conditions for sum-rate optimality

Summary

Many-to-one XC

- Strategies where a subset of interfering signals are treated as noise
- Conditions for sum-rate optimality
- 3×3 case
- $K \times K$ case

Many-to-one IC

• Strategies MIk and conditions for sum-rate optimality

Possible Extensions

- More general topologies
 - Bounds using many-to-one results
 - Approximate sum-rate optimality
 - Recent results for strategy M1 (TIN) by Geng, Sun & Jafar 2014

(日) (同) (三) (三)

Thank you

http://www.ee.iitm.ac.in/~skrishna/