Gaussian many-to-one channels Some sum capacity results ${ }^{1}$

Srikrishna Bhashyam
Department of Electrical Engineering Indian Institute of Technology Madras
Chennai 600036
January 1, 2016

Joint work with Ranga Prasad and A. Chockalingam (IISc)

[^0]
Single-hop Interference Network [Carleial '78]

- K transmitters, N receivers, single-hop
- Possible message from each transmitter to each subset of receivers

$$
K\left(2^{N}-1\right) \text { possible messages }
$$

Single-hop interference networks: Two special cases

$K \times N$ Interference network

Interference channel (IC)
X channel (XC)

K-user IC

- K distinct $T x-R x$ pairs, K messages
- $K(K-1)$ interfering links

3-user IC

$\mathrm{K} \times \mathrm{NXC}$

- Message for each link
- KN messages

Gaussian interference channel: Some known results

2-user IC

- Capacity

Strong interference [Carleial75, HanKob81, Sato81]

- Sum capacity
- Mixed interference [MotKha09]

Noisy interference [Annveeo9, MotKhao9, ShaKraCheo9]

K-user IC

- Sum capacity: Noisy interference [ShaKraCheoo, Annveeo9]
- Capacity region: Symmetric very strong interference [Srijafisisafos]

K-user Many-to-one IC

- Sum capacity: Noisy interference [CadJafo9, Annveeog]
- Capacity region: Symmetric very strong interference [ZhuGas15]
- Special case $(K=2)$: One-sided IC / Z-IC [Sason04]
- This talk (Sum capacity)

Gaussian X channel: Some known results

$2 \times 2 \mathrm{XC}$

- Sum capacity: Noisy interference [Huacadafin]
$K \times K$ Many-to-one XC
- Special case ($K=2$): ZC

Sum capacity: Weak interference [Liulluo4]
Sum capacity: Strong interference [ChomotGaro7]
Capacity region: Moderately strong interference [ChoMotGaro7]

- This talk (Sum capacity)

Gaussian many-to-one channels

Many-to-one Channels: Motivation

- Captures some essential features (interference), easier for analysis
- Results can be used to find bounds for more general topologies
- Bounds for 2-user IC using one-sided IC
- Approximation to a possible real scenario

3×3 Gaussian many-to-one X channel

Capacity region (5-dimensional) not easy to characterize

- One flow on each link ($R_{i j}$: Rate from $\mathrm{Tx} j$ to $\mathrm{Rx} i$)
- $\mathcal{C}=$ Set of all achievable $\mathbf{R}=\left(R_{11}, R_{22}, R_{12}, R_{33}, R_{13}\right)$
- This talk: sum capacity

Channel in standard form

Reduce the number of parameters required

- $\mathcal{C}\left(\mathbf{P}^{\prime}, \mathbf{h}, \mathbf{N}\right)=\mathcal{C}_{\text {standard }}(\mathbf{P}, a, b)$
- Z_{i} IID $\sim N(0,1), \mathbf{P}, \mathbf{P}^{\prime}$: power constraints, \mathbf{N} : noise variance vector

Result for the 3×3 many-to-one XC

$P_{1}=P_{2}=P_{3}=0 \mathrm{~dB}$

Many-to-one IC

A special case of the many-to-one XC

- Sum capacity: Noisy interference Annapureddy \& Veeravalli 2009, Cadambe \& Jafar 2009
- Capacity: Symmetric very strong interference zhu \& Gastpar 2015
- Capacity within a constant gap Bresler, Parekh \& Tse 2010, Jovicic, Wang, \& Viswanath 2010

Result for the 3×3 many-to-one IC

$P_{1}=P_{2}=P_{3}=3 \mathrm{~dB}$

Rest of this talk

3×3 Many-to-one XC

- Transmission strategies for the many-to-one XC
- Treat interference from a subset of transmitters as noise
- Use of Gaussian codebooks
- Conditions for sum rate optimality

Extensions to $\mathrm{K} \times \mathrm{K}$ Many-to-one XC
K \times K Many-to-one IC

Gaussian 3×3 many-to-one XC

Strategy M1: Treating Interference as Noise (TIN)

Achieved sum-rate
$R_{\text {sum }}=\frac{1}{2} \log _{2}\left(1+\frac{P_{1}}{a^{2} P_{2}+b^{2} P_{3}+1}\right)+\frac{1}{2} \log _{2}\left(1+P_{2}\right)+\frac{1}{2} \log _{2}\left(1+P_{3}\right)$

Strategy M2

Achieved sum-rate

$$
R_{\text {sum }}=\frac{1}{2} \log _{2}\left(1+\frac{P_{1}+a^{2} P_{2}}{b^{2} P_{3}+1}\right)+\frac{1}{2} \log _{2}\left(1+P_{3}\right)
$$

Strategy M2

Achieved sum-rate

$$
R_{\text {sum }}=\frac{1}{2} \log _{2}\left(1+\frac{P_{1}+b^{2} P_{3}}{a^{2} P_{2}+1}\right)+\frac{1}{2} \log _{2}\left(1+P_{2}\right)
$$

Strategy M3

Achieved sum-rate

$$
R_{\text {sum }}=\frac{1}{2} \log _{2}\left(1+P_{1}+a^{2} P_{2}+b^{2} P_{3}\right)
$$

Sum-rate optimality of Strategy M1 (TIN)

Strategy M1 achieves sum capacity if $a^{2}+b^{2} \leq 1$

Sum-rate optimality of Strategy M2

Strategy M2 achieves sum capacity if $b^{2}<1$ and $a^{2} \geq \frac{\left(1+b^{2} P_{3}\right)^{2}}{1-b^{2}}$

Approximate sum-rate optimality of Strategy M3

Strategy M3 achieves rates within

$$
\frac{1}{2} \log _{2}\left(\frac{1-\left(1+b^{2} P_{3}\right)^{-1} \rho^{2}}{1-\rho^{2}}\right) \text { bits }
$$

of sum capacity if $b^{2} \geq 1$ and $a^{2} \geq \frac{\left(1+b^{2} P_{3}\right)^{2}}{\rho^{2}}$

Sum-rate optimality proofs: Outline

Need an upper bound that matches achievable sum-rate
Upper bound using

- Fano's inequality
- Degraded receivers
- Worst-case additive noise result, Entropy-Power inequality (EPI)
- Genie-aided channel/Channel with side information (M2 \& M3)

Degraded receivers

- If $a^{2} \leq 1, \mathrm{R} \times 1$ is a degraded version of Rx 2 w.r.t. W_{12}

$$
H\left(W_{12} \mid \mathbf{y}_{2}^{n}\right) \leq H\left(W_{12} \mid \mathbf{y}_{1}^{n}\right) \leq n \epsilon_{n}
$$

- If $b^{2} \leq 1, R \times 1$ is a degraded version of $R \times 3$ w.r.t. W_{13}

Worst-case additive noise

- $\mathbf{Z}^{n} \sim \mathcal{N}\left(\mathbf{0}, \Sigma_{z}\right)$ IID
- \mathbf{X}^{n} : average covariance constraint Σ_{X}

Worst case noise result (Diggavi \& Cover 01, Annapureddy \& Veeravalli 09)

$$
h\left(\mathbf{X}^{n}\right)-h\left(\mathbf{X}^{n}+\mathbf{Z}^{n}\right) \leq n h\left(\mathbf{X}_{G}\right)-n h\left(\mathbf{X}_{G}+\mathbf{Z}\right),
$$

where $\mathbf{X}_{G} \sim \mathcal{N}\left(\mathbf{0}, \Sigma_{X}\right)$.

Another result ${ }^{2}$

$$
\begin{aligned}
\sum_{i=1}^{K} h\left(X_{i}^{n}+Z_{i}^{n}\right)- & h\left(\sum_{i=1}^{K} c_{i} X_{i}^{n}+Z_{1}^{n}\right) \\
\leq & n \sum_{i=1}^{K} h\left(X_{i G}+Z_{i}\right)-n h\left(\sum_{i=1}^{K} c_{i} X_{i G}+Z_{1}\right) \\
& \text { if } \sum_{i=1}^{K} c_{i}^{2} \leq \sigma^{2}
\end{aligned}
$$

- X_{i}^{n} with power constraint $\sum_{j=1}^{n} \mathbb{E}\left[\left(X_{i j}^{2}\right] \leq n P_{i}\right.$
- Z_{1}^{n} vector with IID $\mathcal{N}\left(0, \sigma^{2}\right)$ components
- $Z_{i}^{n}, i \neq 1$ vector with IID $\mathcal{N}(0,1)$ components
- X_{i}^{n} are independent of Z_{i}^{n}
- $X_{i G} \sim \mathcal{N}\left(0, P_{i}\right)$
${ }^{2}$ Lemma 5 from Annapureddy \& Veeravalli 2009 in different form

Proof of sum-rate optimality of Strategy M1 (1)

Let S denote any achievable sum-rate. Want to show

$$
S \leq I\left(x_{1 G} ; y_{1 G}\right)+I\left(x_{2 G} ; y_{2 G}\right)+I\left(x_{3 G} ; y_{3 G}\right) .
$$

$$
\begin{aligned}
n S \leq & H\left(W_{11}\right)+H\left(W_{12}, W_{22}\right)+H\left(W_{13}, W_{33}\right) \\
= & I\left(W_{11} ; \mathbf{y}_{1}^{n}\right)+\sum_{i=2}^{3} I\left(W_{1 i}, W_{i i} ; \mathbf{y}_{i}^{n}\right) \\
& +H\left(W_{11} \mid \mathbf{y}_{1}^{n}\right)+\sum_{i=2}^{3} H\left(W_{1 i}, W_{i i} \mid \mathbf{y}_{i}^{n}\right) \\
\leq & I\left(\mathbf{x}_{1}^{n} ; \mathbf{y}_{1}^{n}\right)+\sum_{i=2}^{3} I\left(\mathbf{x}_{i}^{n} ; \mathbf{y}_{i}^{n}\right) \\
& +H\left(W_{11} \mid \mathbf{y}_{1}^{n}\right)+\sum_{i=2}^{3} H\left(W_{1 i}, W_{i i} \mid \mathbf{y}_{i}^{n}\right)
\end{aligned}
$$

Proof of sum-rate optimality of Strategy M1 (2)

$n S \leq I\left(\mathbf{x}_{1}^{n} ; \mathbf{y}_{1}^{n}\right)+\sum_{i=2}^{3} I\left(\mathbf{x}_{i}^{n} ; \mathbf{y}_{i}^{n}\right)+H\left(W_{11} \mid \mathbf{y}_{1}^{n}\right)+\sum_{i=2}^{3} H\left(W_{1 i}, W_{i i} \mid \mathbf{y}_{i}^{n}\right)$

$$
\begin{aligned}
\stackrel{(a)}{\leq} & h\left(\mathbf{y}_{1}^{n}\right)-h\left(a \mathbf{x}_{2}^{n}+b \mathbf{x}_{3}^{n}+\mathbf{n}_{1}^{n}\right)+h\left(\mathbf{x}_{2}^{n}+\mathbf{n}_{2}^{n}\right)-h\left(\mathbf{n}_{2}^{n}\right)+h\left(\mathbf{x}_{3}^{n}+\mathbf{n}_{3}^{n}\right) \\
& -h\left(\mathbf{n}_{3}^{n}\right)+5 \epsilon_{n}
\end{aligned}
$$

(b)

$$
\begin{aligned}
(b) & n h\left(y_{1 G}\right)-n h\left(a x_{2 G}+b x_{3 G}+n_{1}\right)+n h\left(x_{2 G}+n_{2}\right)+n h\left(x_{3 G}+n_{3}\right) \\
& -n h\left(n_{2}\right)-n h\left(n_{3}\right)+5 \epsilon_{n} \\
= & n l\left(x_{1 G} ; y_{1 G}\right)+n l\left(x_{2 G} ; y_{2 G}\right)+n l\left(x_{3 G} ; y_{3 G}\right)+5 \epsilon_{n},
\end{aligned}
$$

(a): Fano's inequality, $a^{2} \leq 1$ and $b^{2} \leq 1$
(b): Generalized form of worst-case noise result, $a^{2}+b^{2} \leq 1$

Proof of sum-rate optimality of Strategy M2 (1)

Want to show $S \leq I\left(x_{1 G}, x_{2 G} ; y_{1 G}\right)+I\left(x_{3 G} ; y_{3 G}\right)$.

$$
S_{1}=X_{1}+a X_{2}+\eta N_{1}
$$

- Show $S \leq I\left(x_{1 G}, x_{2 G} ; y_{1 G}, s_{1 G}\right)+I\left(x_{3 G} ; y_{3 G}\right)$
- $E\left[N_{1} Z_{1}\right]=\rho, \eta>0$ chosen later

Proof of sum-rate optimality of Strategy M2 (2)

$$
\begin{align*}
n S \leq & H\left(W_{11}, W_{12}, W_{22}\right)+H\left(W_{13}, W_{33}\right) \\
= & I\left(W_{11}, W_{12}, W_{22} ; \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}\right)+H\left(W_{11} \mid \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}\right)+H\left(W_{12} \mid \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}, \mathbf{x}_{1}^{n}\right) \\
& +H\left(W_{22} \mid \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}, \mathbf{x}_{1}^{n}, W_{12}\right)+I\left(W_{13}, W_{33} ; \mathbf{y}_{3}^{n}\right)+H\left(W_{13} \mid \mathbf{y}_{3}^{n}\right) \\
& +H\left(W_{33} \mid \mathbf{y}_{3}^{n}, W_{13}\right) \\
\leq & I\left(\mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n} ; \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}\right)+H\left(W_{11} \mid \mathbf{y}_{1}^{n}\right)+H\left(W_{12} \mid \mathbf{y}_{1}^{n}\right) \\
& +H\left(W_{22} \mid \mathbf{s}_{1}^{n}, \mathbf{x}_{1}^{n}\right)+I\left(\mathbf{x}_{3}^{n} ; \mathbf{y}_{3}^{n}\right)+H\left(W_{13} \mid \mathbf{y}_{3}^{n}\right)+H\left(W_{33} \mid \mathbf{y}_{3}^{n}\right), \\
& \text { (a) } \\
\leq & I\left(\mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n} ; \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}\right)+I\left(\mathbf{x}_{3}^{n} ; \mathbf{y}_{3}^{n}\right)+5 n \epsilon_{n} \tag{1}\\
\text { (a): } \eta^{2} \leq & a^{2} \text { and } b^{2} \leq 1
\end{align*}
$$

Proof of sum-rate optimality of Strategy M2 (3)

$$
\begin{aligned}
& n S \leq I\left(\mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n} ; \mathbf{y}_{1}^{n}, \mathbf{s}_{1}^{n}\right)+I\left(\mathbf{x}_{3}^{n} ; \mathbf{y}_{3}^{n}\right)+5 n \epsilon_{n} \\
&= I\left(\mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n} ; \mathbf{s}_{1}^{n}\right)+I\left(\mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n} ; \mathbf{y}_{1}^{n} \mid \mathbf{s}_{1}^{n}\right)+I\left(\mathbf{x}_{3}^{n} ; \mathbf{y}_{3}^{n}\right)+5 n \epsilon_{n} \\
&= h\left(\mathbf{s}_{1}^{n}\right)-h\left(\mathbf{s}_{1}^{n} \mid \mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n}\right)+h\left(\mathbf{y}_{1}^{n} \mid \mathbf{s}_{1}^{n}\right) \\
&-h\left(\mathbf{y}_{1}^{n} \mid \mathbf{s}_{1}^{n}, \mathbf{x}_{1}^{n}, \mathbf{x}_{2}^{n}\right)+h\left(\mathbf{y}_{3}^{n}\right)-h\left(\mathbf{y}_{3}^{n} \mid \mathbf{x}_{3}^{n}\right)+5 n \epsilon_{n} \\
& \leq n h\left(s_{1 G}\right)-n h\left(\eta z_{1}\right)+n h\left(y_{1 G} \mid s_{1 G}\right) \\
&-h\left(b \mathbf{x}_{3}^{n}+\tilde{\mathbf{n}}_{1}^{n}\right)+h\left(\mathbf{x}_{3}^{n}+\mathbf{n}_{3}^{n}\right)-n h\left(n_{3}\right)+5 n \epsilon_{n} \\
&(b) \\
& \leq n h\left(s_{1 G}\right)-n h\left(\eta z_{1}\right)+n h\left(y_{1 G} \mid s_{1 G}\right) \\
&-n h\left(b x_{3 G}+\tilde{n}_{1}\right)+n h\left(x_{3 G}+n_{3}\right)-n h\left(n_{3}\right)+5 n \epsilon_{n} \\
&= n I\left(x_{1 G}, x_{2 G} ; y_{1 G}, s_{1 G}\right)+n I\left(x_{3 G} ; y_{3 G}\right)+5 n \epsilon_{n},
\end{aligned}
$$

(b): $b^{2} \leq 1-\rho^{2}$

Proof of sum-rate optimality of Strategy M2 (4)

Choose

$$
\eta \rho=1+b^{2} P_{3}
$$

to get

$$
I\left(x_{1 G}, x_{2 G} ; y_{1 G}, s_{1 G}\right)=I\left(x_{1 G}, x_{2 G} ; y_{1 G}\right)
$$

Then, choose

$$
\rho^{2}=1-b^{2}
$$

to get the final result

$$
b^{2}<1 \text { and } a^{2} \geq \frac{\left(1+b^{2} P_{3}\right)^{2}}{1-b^{2}}
$$

Back to the numerical result

- $P_{1}=P_{2}=P_{3}=0 \mathrm{~dB}$

Gaussian $K \times K$ many-to-one $X C$

Strategy M1 for the $K \times K$ many-to-one XC

Strategy M1 achieves sum capacity if $\sum_{j=2}^{K} h_{j}^{2}<1$

Strategy M2 for the $K \times K$ many-to-one XC

Strategy M2 achieves sum capacity if

$$
\sum_{j=2, j \neq k}^{K} h_{j}^{2}<1 \text { and } h_{k}^{2} \geq \frac{\left(1+\sum_{j=2}^{K} h_{j}^{2} P_{j}\right)^{2}}{1-\sum_{j=2, j \neq k}^{K} h_{j}^{2}}
$$

Gaussian K-user many-to-one IC

$K \times K$ many-to-one IC

Strategies MI k for $k=1,2, \ldots, K$

- Decode interference from transmitters 2 to k (for $k \geq 2$)
- Treat interference from transmitters $k+1$ to K as noise

Strategy MI2 for the 3×3 many-to-one IC (1)

Achieved sum-rate

$$
R_{\text {sum }}=\frac{1}{2} \log _{2}\left(1+\frac{P_{1}}{b^{2} P_{3}+1}\right)+\frac{1}{2} \log _{2}\left(1+P_{2}\right)+\frac{1}{2} \log _{2}\left(1+P_{3}\right)
$$

Required condition: $a^{2} \geq 1+P_{1}+b^{2} P_{3}$

Strategy MI2 for the 3×3 many-to-one IC (2)
Want to show $S \leq I\left(x_{1 G} ; y_{1 G} \mid x_{2 G}\right)+I\left(x_{2 G} ; y_{2 G}\right)+I\left(x_{3 G} ; y_{3 G}\right)$.

- Need $b^{2} \leq 1$

Summary of conditions for 3×3 many-to-one IC

Strategy	Channel conditions
$\mathcal{M I} 1$	$a^{2}+b^{2} \leq 1$
\mathcal{M} I2	(i) $a^{2} \geq 1+P_{1}+b^{2} P_{3}, b^{2} \leq 1$
	(ii) $b^{2} \geq 1+P_{1}+a^{2} P_{2}, \quad a^{2} \leq 1$
$\mathcal{M I} 3$	(i) $a^{2} \geq 1+P_{1}+b^{2} P_{3}, b^{2} \geq 1+P_{1}$
	(ii) $b^{2} \geq 1+P_{1}+a^{2} P_{2}, \quad a^{2} \geq 1+P_{1}$

Result for the 3×3 many-to-one IC

$P_{1}=P_{2}=P_{3}=3 \mathrm{~dB}$

Summary

Summary

Many-to-one XC

- Strategies where a subset of interfering signals are treated as noise
- Conditions for sum-rate optimality
- 3×3 case
- $K \times K$ case

Many-to-one IC

- Strategies MIk and conditions for sum-rate optimality

Summary

Many-to-one XC

- Strategies where a subset of interfering signals are treated as noise
- Conditions for sum-rate optimality
- 3×3 case
- $K \times K$ case

Many-to-one IC

- Strategies MIk and conditions for sum-rate optimality

Possible Extensions

- More general topologies

Bounds using many-to-one results

- Approximate sum-rate optimality Recent results for strategy M1 (TIN) by Geng, Sun \& Jafar 2014

Thank you

http://www.ee.iitm.ac.in/~skrishna/

[^0]: ${ }^{1}$ R. Prasad, S. Bhashyam, A. Chockalingam, "On the Gaussian Many-to-One X Channel," IEEE Transactions on Information Theory, vol. 62, no. 1, pp. 244-259; January 2016.

